‘P11 (448)
sooyuog 19191“ sOTuO. I:)u1Oq; )
In the Name of Allah the most
Beneficent & Merciful
n. "~. 'n. ':: . , .. ’...
3”‘ ‘*2
5° ‘S
bififi . ‘%'5<'I>
Chemtromcs Water
V», S erV1Ces (PVt. ) Ltd.
‘ '
www. chem1rOnicspk. Oom
Lahore Head Offic...
Chemtronics Water Services (pvt. ) ltd. has
& three main division
_ _ , ,-, :_;
wvmdielvmoflcsokwln
V Water Treatment ...
O
5'‘
CD
2
0
+11%-
F“;
F»
1555
CD
CD
3.
0
CD
W
Major Accomplishments
1) Nishat Power Plant, (NPL, IPP @ 225 MW),
Our...
'P1’I(‘1A<I)
sooyuas 19112 M sotuonuroqg)
Chemtronics Water Services (Pvt. ) Ltd.
believe in effective services, cost e...
Pre-treatment. . . . . . . . . . . . . Wliy?
Key Control Parameters for Cooling Tower
PARAMETER LIMIT PARAMETE...
‘P11 (Ma)
S 19191“ soruonuroqg
soopuo
Pre-treatment. . . . . . . . . . . . . Wliy?
Key Control Parameters for...
What is a softener?
‘P11 (Ma)
S 19191“ soruonuroqg
soopuo
O Softener is an ion exchange device
0 softener contains ...
wuaumronxsomm
’P1’I ma)
sooyuog 19112 M soruonuroqg
Worldng principle?
Ion exchange is an adsorption phenomenon wher...
’P1’I (Ma)
sooyuog 19112 AA soruonuraqg
Chemistry of the Ion—Exchange Reaction
Removal of carbonate hardness:
Ca(HCO3)...
@ Chemistry of the Ion-Exchange Reaction
www memimmspk com
After a Vast number of C a*2 and Mg” ions have become
attache...
‘P11 ma)
sooiA. I9g 19121“ soruonuroqg
The reaction can be
reversed by greatly
increasing the concentration
of sodium...
°P1’I ma)
s9oiA. I9S 19121“ soruonuroqg
& Key Terms in Softener
ww~mern1ron»sp mm
0 Service removing hardness minera...
'P1’I('1AcI)
9
3
S
E.
8
€
.9»
94
m
(D
3.
O
3
natal? . 9 .
N
-------- --, :-: - -L" CONTOL _ - NRV
'_ 4_ # PANEL...
‘P11 (Ma)
S9:)}A. I9S 1918M SO}IIO. I_1,III9I{: )
What happens to the water?
Cations Anions Cations Anions
HCO,
C...
'P1’I ma)
s9oiA. IoS 19121“ soruoriuioqg
Zeolite Softening
Advantages
O Inexpensive — Capital &
operating costs
I Si...
What is a BM Plant?
Demineralisation lS also called DEMINERALISED PLANT
eionisa ion - A ~ . . , . ~ .
d...
wwd-ummrixsokeom
’P1’I (Ma)
S 19112 M soiuonuioqg
sooiiuo
Worldng principle?
Ion exchange is an adsorption phen...
’P1’I (Ma)
sooiA. I9S 19112 AA soiuonuioqg
Layout SAC — (DEG) — SBA
First step is decationisation
RSAC—H + Nat ———— --> ...
’P1’I (Ma)
sooiA. I9S 19112 AA soiuonuioqg
Chemistry of the Ion-Exchange Reaction
Regeneration
The SAC resin is regener...
& Operating Cycle
www mernimmspx com
I Demineralisation service flow/ resin exhaustion
O Resin bed backwashing
O Resin r...
’P1’I ma)
sooiA. I9S 19112 M soiuonuioqg
Schematic Diagram of DlVl plant
l
Regeneration
. __m
l .
T l
THLU ‘
, ...
@ What happens to the water?
ww mernimmspkmrn
Cations Anions C“'l°“’ ‘“l°"5 Cations Anions cations Anions
m H M
5'0...
Resin-based demineralization
°P1’I (“mat
s9oiA. ioS 19121“ soiuoriuioqg
Advantages Limitations
0 Reduction in all di...
@ What is Reverse Osmosis Plant?
wvmdserrnrwhfiomln
Osmosis is a special case of diffusion in which the molecules
are wa...
What is Reverse Osmosis Plant?
Reverse osmosis occurs when the water is moved across the
membrane against the concent...
’P1’I ma)
S 1912)“ so
l“011“19‘IO
sooiiuo
Working of Membrane Element
Feed VI/ ater
Pofyllnio Tia hlin
Oulo-tcs Prop...
1111 ma)
S90}A. I9S 19113 M SO}IIO. I1III9I{: )
Filtration Spectrum
Membrane process characteristics
ZEIVA
rrrerrtljrarl...
‘P1’I (Ma)
S 19121“ soguonuxsqg
Filtration Spectrum
I I I I I
ST Microscope Scanning Electron Microscope Optical Microsc...
& Key Terms in R0 Systems
wwwclserrI1rorMSOmll
° Permeate — The “purified” product water exiting the
system.
° Concent...
‘D11 (°1AJ) S90!A~I9s
.1918 AA S0lIIO. I1III9I[D
& Key Terms in R0 Systems
wwwuiserrnmmcsomrn
° Passage — The opposi...
mrwd-en'I1romsolLoom
’P1’I (Ma)
S 19112 M soiuonuioqg
Schematic Diagram of R0 Plant
CHEMTRONICS
II, Ifi
CLI...
‘P11 (Ma)
S 19112 M soruonuioqg
soopuo
What happens to the water?
REVERSE OSMOSIS WATER CONTAMINANT REJECTION TABLE
G...
Reverse Osmosis
Advantages Limitations
O Rejection of all dissolved 0 Higher electrical costs than
solids resin-based...
M
W
Riaz Textile As
a Case Study
Oronzwoiom ¢<m. §. moaionm
9.3.. HE.
1311 ma)
S90}A. I9S 19113 M SO}IIO. I1III9I{: )
System Data (Cooling Towers)
Recirculation Rate / Pump
No of Co...
65 Riaz Textile As a Case Study
BASED ON RAW WATER BASED ON BLENDED VVATER
(100% Raw Water) (30% Raw Water+70% R. O Water...
65 Riaz Textile As a Case Study
wM mn
System Evaluation
Parameter Raw Water Blended water
Rate of evaporation. (M3/hr)...
Riaz Textile As a Case Study
Total Monthly Cost 228,440/— 54,240/—
Cost Difference 174,200/—
2,090,400/-
3,300,000/-
3....
‘P11 ('1AcI)
sooyuog 19112 M soiuonwaqg
Riaz Textile As a Case Study
2,090,400/—
ZOM3/Hr DM Plant Capital cost 2,500 000...
'P1’I (ma)
s9otA. I9g 19121“ sotuonuxoqg
RO Preceding Demineralizer
Example with relatively inexpensive water and sewerag...
R0 Preceding Demineralizer
Example with more expensive water and sewerage
, .:i. ;~. ?., :.. . R0 cost justified above ap...
& Saving Water, Cost & Energy
r
1}
“W” is a Big Win in Every Way,
and the creative use of Membrane Solutions for
Sys...
9-
3
O
3:
:2.
92
U3
saopua
THANK YOU
Presentation Designer
Engr. AFAN MIRAJ
CHEMTRONICS WATER SERVICES
of 44

Pretreatment choice

water treatment equipment compression
Published on: Mar 4, 2016
Published in: Engineering      
Source: www.slideshare.net


Transcripts - Pretreatment choice

  • 1. ‘P11 (448) sooyuog 19191“ sOTuO. I:)u1Oq; ) In the Name of Allah the most Beneficent & Merciful n. "~. 'n. ':: . , .. ’ ’ v»; »'‘r-}‘’, . } I ' ugc I‘ “L U‘1 (".2 "_, 1 I . _. M5."/ ‘I ~: I L‘ 2171;. Engg ATaI1|VIira' 9 1 I - I 1 (‘$7.2 2- ~. -2: : . »-~'-- - 42 ? l ‘T ‘.221’ I’: _. ..-f” a-’
  • 2. 3”‘ ‘*2 5° ‘S bififi . ‘%'5<'I> Chemtromcs Water V», S erV1Ces (PVt. ) Ltd. ‘ ' www. chem1rOnicspk. Oom Lahore Head Office 216/ B, block C, PCSIR (Staff) colony College Road, Lahore Telephone: (+92) 42-35067?? ?) -4 Fax: (+92) 4235215234 E-mail: IIIII»@’I"IN-IIIII1»IIIcsp, I1.u(III www. chemtr0nIcspk. com Rawalpindi 0ffice IIIIIIIEII IIIIICC 1e1eph0ne; (+92) 51.53g1954 TeIephone: (+92) 61-4035700, 6761611 E-mail: info@cIIemtronIcspII. com E-lfl3II3 IflI0@€II€mIf0flIC5DII-C01“
  • 3. Chemtronics Water Services (pvt. ) ltd. has & three main division _ _ , ,-, :_; wvmdielvmoflcsokwln V Water Treatment Chemical Division 'r Boiler water treatment ‘r Cooling water treatment chemicals }' Reverse osmosis antiscalant and support products i Waste water treatment coagulants and flocculants V Equipment I)ivisi011 k Water Softener }' D. M. Plant/ Polisher 'P1’I (‘1AcI) SQOIAJQS 19181“ SO}IIO. I1III9I{Q 7 Reverse Osmosis V Automation I)ivisi0n f Auto Chemical Dosing System 7 pH . Conductivity Controller
  • 4. O 5'‘ CD 2 0 +11%- F“; F» 1555 CD CD 3. 0 CD W Major Accomplishments 1) Nishat Power Plant, (NPL, IPP @ 225 MW), Our treatment scope is. ‘- Cooling Water Treatment Boiler Water Treatment Jacket Water Treatment - Waste Water Treatment - RO Water Treatment 2) Hallmore power plant, gIPP @ 225 MW) Our treatment scope is; Cooling Water Treatment RO Water Treatment Boiler Water Treatment 3) Fauji Cement kallar kahar, Our treatment scope is; Cooling Water Treatment RO Water Treatment
  • 5. 'P1’I(‘1A<I) sooyuas 19112 M sotuonuroqg) Chemtronics Water Services (Pvt. ) Ltd. believe in effective services, cost effective treatment, professional positive attitude and a right backup from our existing clients, to enhance our knowledge & capabilities.
  • 6. Pre-treatment. . . . . . . . . . . . . Wliy? Key Control Parameters for Cooling Tower PARAMETER LIMIT PARAMETER LIMIT 0 7.5~ 8.0 7.8~8.4 E‘ E, TDS. ppm <2500 TDS. ppm <3000 O 3% E T. A1k. ppm as CaCO3 200~400 T. A1k, ppm as CaCO3 200~40O O ,3 7’ Phosphonate, ppm as P04 03 ~ 8 Phosphonate, ppm as 03 ~ 8 F, g P04 8 "" Zinc ppm as Zn LSI 0 ~ +1.5 . 9; * CD LSI fJ O R R1 05 07 E, ‘ ‘ Depend on 8 C/ C Depend on Make up m Make up Quality Quality Zinc + Phosphonate Phosphonate
  • 7. ‘P11 (Ma) S 19191“ soruonuroqg soopuo Pre-treatment. . . . . . . . . . . . . Wliy? Key Control Parameters for low & Medium Pressure Boiler LIMIT l0.5~ 12.0 <35OO <l5OO PARAMETER TDS, ppm T. Alk, ppm as CaCO3 P. Alk, ppm as CaCO3 20~50 20~5O Phosphate, ppm as P04 Sulphite, ppm as S034 C/ C Depend on Make up Quality Sulphite + Phosphate
  • 8. What is a softener? ‘P11 (Ma) S 19191“ soruonuroqg soopuo O Softener is an ion exchange device 0 softener contains a micro porous exchange resin 0 Ion exchange involves removing the hardness ions 0 Replacing them with non-hardness » - ‘ ' {T3 ions, typically sodium
  • 9. wuaumronxsomm ’P1’I ma) sooyuog 19112 M soruonuroqg Worldng principle? Ion exchange is an adsorption phenomenon where the mechanism of adsorption is electrostatic. Electrostatic forces hold ions to charged functional groups on the surface of the ion exchange resin. The adsorbed ions replace ions that are on the resin surface on a 1:1 charge basis. er chains Cross-links Fixed resin functional groups
  • 10. ’P1’I (Ma) sooyuog 19112 AA soruonuraqg Chemistry of the Ion—Exchange Reaction Removal of carbonate hardness: Ca(HCO3)2 + Na2X ---- --> CaX + 2NaHCO3 + Na2X ---- --> Removal of non-carbonate hardness: CaSO4 + Na, x > CaX + Na, so4 §~ ' cac1,+Na, x ———— --> CaX + 2NaC1 {]; if“? »‘ . MgSO4 + Na, x ———— --> MgX+Na2SO4 , . ; . MgCL, +Na, x ———— --> MgX+2NaC1 E‘: ‘e The X represents the zeolite.
  • 11. @ Chemistry of the Ion-Exchange Reaction www memimmspk com After a Vast number of C a*2 and Mg” ions have become attached to the resin beads, and most of the Na+ ions have been released, the resin can no longer soften the water. If no new chemical reaction is set, the incoming Ca” and Mg” ions flow untouched through the unit because there is no room for them on the resin beads ‘P11 ma) S90lA. I9S 19181“ S’. )[IIO. I1III9I{: )
  • 12. ‘P11 ma) sooiA. I9g 19121“ soruonuroqg The reaction can be reversed by greatly increasing the concentration of sodium in the solution. Reverse process drive the C a*2 and Mg’? ions off the resin beads and replace them with Na” ions. MgX+2NaC] ---- --> MgC 12 + Na2X CaX+ 2NaC1 ---- --> C aCl2 + Na2X At appropriate time, the resin beads are washed with a strong solution, also known as a BRINE SOLUTION
  • 13. °P1’I ma) s9oiA. I9S 19121“ soruonuroqg & Key Terms in Softener ww~mern1ron»sp mm 0 Service removing hardness minerals from Hard water water. 0 Backwash is a rapid upward flow of water that loosens the resin bed and flushes iron particles. 0 Brine Draw in which brine is drawn out of the brine cabinet and passed through the resin. 0 Slow Rinse after brine is completely removed from the brine cabinet into the resin tank. 0 Fast Rinse is a fast flow of water down through the resin to flushes all remaining brine from the tank
  • 14. 'P1’I('1AcI) 9 3 S E. 8 € .9» 94 m (D 3. O 3 natal? . 9 . N -------- --, :-: - -L" CONTOL _ - NRV '_ 4_ # PANEL I Z l | ‘T J l l l AC ‘ AC | J I I | NRV GV l1P~101 T I I NRV —I ><GV Pg Drain FP—10Z T H EH01 v—1o1 v—102 Soft Water BT—102
  • 15. ‘P11 (Ma) S9:)}A. I9S 1918M SO}IIO. I_1,III9I{: ) What happens to the water? Cations Anions Cations Anions HCO, Ca o Mg l Raw Water Softened Water 0 Water salinity is unchanged 0 Only the hardness has been replaced by sodium 0 A small residual hardness is still remain there 0 Alkalinity remain same
  • 16. 'P1’I ma) s9oiA. IoS 19121“ soruoriuioqg Zeolite Softening Advantages O Inexpensive — Capital & operating costs I Simple-to-operate I Durable I Safe & inexpensive sodium chloride regenerant Limitations 0 No reduction in total dissolved solids (TDS) 0 FW quality can limit System cycles 0 No silica reduction 0 No alkalinity reduction without dealkalizer
  • 17. What is a BM Plant? Demineralisation lS also called DEMINERALISED PLANT eionisa ion - A ~ . . , . ~ . d o o to _. fg _fi. I" E. 0 Two different types of resins: a cation l. ,._-; '“°-; .3'5"“-i~"€"’” 7 O - -éunxiu V = * - rpd E exchanger and an anion exchanger ' O . . El 2 O Cation resin in the hydrogen form (H+) “"°‘ “”‘ E g. 0 anion resin in the hydroxyl form (OH‘) ‘ii ’ ' H . . ? '--'l' . . m 0 A degasifier 1S used to remove the carbon | -.; i'_'fl‘= ‘ - — Ag’ _. i.. ,. a dioxide created after cation exchange is 1 2 1 ‘C O "l. .. ‘. ; » 3 used to remove the carbon dioxide «N ' " ‘ ' created after cation exchange "*2 K " "*‘_, ..
  • 18. wwd-ummrixsokeom ’P1’I (Ma) S 19112 M soiuonuioqg sooiiuo Worldng principle? Ion exchange is an adsorption phenomenon where the mechanism of adsorption is electrostatic. Electrostatic forces hold ions to charged functional groups on the surface of the ion exchange resin. The adsorbed ions replace ions that are on the resin surface on a 1 :1 charge basis. r'ZI . v ' i ‘ z ' ‘ 'i Attracted to Negative Surface Attracted to Positive Surface + _ _ _ + + + + _ _ + A030" + + __ —Cation __ + Exchanger + __ Exchanger __ 'i‘ Stationary-phase _ $tofionary. phqse + P°l'llCl9 + + — Particle — — ++ —_ +++ _ —
  • 19. ’P1’I (Ma) sooiA. I9S 19112 AA soiuonuioqg Layout SAC — (DEG) — SBA First step is decationisation RSAC—H + Nat ———— --> RSAC-Na + Ht 2 RSAC-H + Catt ----->(RSAC)2-Ca + 2 Ht Second step, all anions are removed + -----> + Ht ions created in the first step react with the OH’ ions of the second step to produce new molecules of water Ht + OH’ ———— --> H20 :8: = Mobile Phase 0 Eluom » H’ from HNO, . HCI. H, so. . Metnanesultonic aad, iar1anc acid, l etc. 1
  • 20. ’P1’I (Ma) sooiA. I9S 19112 AA soiuonuioqg Chemistry of the Ion-Exchange Reaction Regeneration The SAC resin is regenerated with a strong acid, HCl or HZSO4: R-Na + Ht ---- --> R-H + Nat And the SBA resin is regenerated with a strong alkali, NaOH in 99 % of the cases: RSBA—Cl + one ———— ——> RSBA—OH + Cl’
  • 21. & Operating Cycle www mernimmspx com I Demineralisation service flow/ resin exhaustion O Resin bed backwashing O Resin regeneration O Resin rinsing “RV E AIR RILIASI AIR RHEASI ' ILIASI RKQNEMTION AIR nimsi ? ““m,1,(1;(, ,, . ‘’‘; ,,; H (on, Lflnflflmm M mkwisn REGKNIRMION BA(K‘l S[1'| 'Ll POWER WATIR ‘P11 (“mat S 19181“ S()}IIO. I1III9I{Q 4". ‘.°£_; 'fl’°"M smii am HIDDLI (L mm “"79” 0 W5“ IDLE sirrii am IDLI ER WATIR PONIRWATIR T. . M M K, “ mgcim | INJE(Tt0N D '“‘”'°" N ALKAL| RINS[ iLi<. -iii mi: T : "§’i1". ‘T"E“%‘fT[, L new twist MAL mg, “ml mm M Fm mm “V” D“ ACID | NJ[(TION orr Ill$IR| .lN£NT AIR M Mil “W pm, “ _. _&’L_. #3 mg KR/ cm: PDMR»1 Flow ‘ ###### Nm’, H, sooiA. I9
  • 22. ’P1’I ma) sooiA. I9S 19112 M soiuonuioqg Schematic Diagram of DlVl plant l Regeneration . __m l . T l THLU ‘ , Filter ‘ Feed Tank Pump Ex hang l l . Differential 5 pressure i V II ion! 0 D U l_. ; -‘-‘rs: '— ‘-231’ R egenerution Neutralization l Lt 3 t Desgassin tank ' (removes C02)l»— E Air j . V V Anionl Ex hongc i if 4 . Signal ’ ‘Ml Neutralization l Conductivity sensor | pH sensor lj-4 ‘ l + Desmineralized water
  • 23. @ What happens to the water? ww mernimmspkmrn Cations Anions C“'l°“’ ‘“l°"5 Cations Anions cations Anions m H M 5'0: Raw Water Decatllmtloll Degassed Demineralised O Demineralised water is completely free of ions I Few residual traces of sodium and silica 0 pH value should not be used as a process control °P1’I (“mat s9oiA. ioS 19121“ soiuoriuioqg
  • 24. Resin-based demineralization °P1’I (“mat s9oiA. ioS 19121“ soiuoriuioqg Advantages Limitations 0 Reduction in all dissolved 0 Strong acid/ caustic required solids for regeneration O Enables high cycles 0 Caustic costs high & variable Opel 3t10n 0 Limited anion resin life . C311l3ll0Y t0 Specific PUYllYO Silica and sodium leakage needs 0 Excellent silica rejection O Excellent alkalinity/ CO2 rejection 0 Manpower intensive 0 Operating costs directly proportional to TDS
  • 25. @ What is Reverse Osmosis Plant? wvmdserrnrwhfiomln Osmosis is a special case of diffusion in which the molecules are water and the concentration gradient occurs across a semipermeable membrane. The semipermeable membrane allows the passage of water, but not ions (e. g., Nat, Cazt, C1‘) or larger molecules (e. glucose, urea, bacteria). °P1’I (“mat s9oiA. i9S 19121“ soiuoriuioqg Osmosis can be slowed, stopped, or even reversed if sufficient pressure is applied to the membrane from the ‘concentrated’ side of the membrane.
  • 26. What is Reverse Osmosis Plant? Reverse osmosis occurs when the water is moved across the membrane against the concentration gradient, from higher 9. concentration to lower concentration. 3 Semiperineable Membrane 5’ W rd 2- 5‘ 2 E =2. 9‘ 9; W (1: E. 0 cu W Initial Condition Osmosis Reverse Osmosis
  • 27. ’P1’I ma) S 1912)“ so l“011“19‘IO sooiiuo Working of Membrane Element Feed VI/ ater Pofyllnio Tia hlin Oulo-tcs Prop: -«sq Moaibruo lunr Potysultou Lon: Potyoslot llomwovu Ilnhrl Parlor-In Count tuba Aurtotucoou lg Pomlono Collochoo Mllonol ‘ K Mocnlrno ion channel Spout! our wrap / ..
  • 28. 1111 ma) S90}A. I9S 19113 M SO}IIO. I1III9I{: ) Filtration Spectrum Membrane process characteristics ZEIVA rrrerrtljrarles Water Monovalont ions Suspended solids M, '¢, ofi[gmfion Multivalnnt ions Virusos Bacteria Ultmfiluation Nanofiltration ; / §4/ // Reverse osmosis
  • 29. ‘P1’I (Ma) S 19121“ soguonuxsqg Filtration Spectrum I I I I I ST Microscope Scanning Electron Microscope Optical Microscope Visible to Naked Eye I . Micnomezers (Log Sula) o. ooI om 0.: L0 I0 I00 moo Anggtfom Unigg I I0 I00 I W00 “ I _ . I0‘ I0‘ IO I0‘ (Log 5"“) . 4 5 5 ‘ . ( F ~. ; . _ . (. r-, Y; *4_ ‘. , ax. . 5 A . 1 a , I ; ! Approxiflolecdarwti H i ‘ K 7 S§¢(". M., yP. _~°s"l°2 W . I ‘III Hivlli mm‘. 4Ifl| [ Albumin Prolen ‘Carmen liladt ' "Pau1lPngnenlfl I / l(ln| r‘ I; nr1oloxIn. Pyrogen Baclena ‘ Beam Sand Rad s T la"! A(; ineIeslDusl I Gm. “ Am: -.-am mum Relative ‘ VIIUS 7 I Ta)arx£{{S}i{6i(e I _ Ilkleial Ion 'MiI. .»Jfi&: Size of I H” ‘ , . s Common a mu Inn Materials ‘“Posl1:irlo Hlrie lndngovye‘ 3&1” I i’oIIeu it liomqxio‘ | Asb(. »sl0s ‘I Cal‘ ‘ Human Hair (D Gelaln C 8 e e REVERSE OSMOSIS m Process For _"W, ,,m_M‘ Ul. TRAFlU'lllT|0ll PAlTl(l. £ FILIIATION 5°P3"3tI°" monmunou mcnonmumou Not: -: I Mnoon (| xI0‘ "dull > lx|0' Iudun (0(IXI)1|nrln-1) I Anpuom Um I0" Mum ' |0‘M| aome(¢n (Boom) "V Cour”! In" Wu‘ “ml ms‘
  • 30. & Key Terms in R0 Systems wwwclserrI1rorMSOmll ° Permeate — The “purified” product water exiting the system. ° Concentrate — The concentrated salt solution exiting the system. ° Feed F low— The total flow rate of the source water pumped in the system. ° Recovery - The percentage of permeate achieved in a system, % Recovery = permeate flow/ feed flow X 100. ° Rejection — The percentage of dissolved solids removed from the source water by the membrane. P11 ( 1AcI) Saawas .1918 AA S3lIIO. I1III9I[D
  • 31. ‘D11 (°1AJ) S90!A~I9s .1918 AA S0lIIO. I1III9I[D & Key Terms in R0 Systems wwwuiserrnmmcsomrn ° Passage — The opposite of “rejection”, passage is the percentage of dissolved constituents (contaminants) in the feed water allowed to pass through the membrane. ' Pass — When permeate of first set of membranes is reintroduced into another set of RO membranes. Each set of membranes is called pass. ' Sta e— When reject of first set of membranes is introduced into another set of membranes. Each set is called stage of RO. ' Flux — The rate of permeate transported per unit of membrane area per unit time, usually measured in gallons per square foot per day (gfd).
  • 32. mrwd-en'I1romsolLoom ’P1’I (Ma) S 19112 M soiuonuioqg Schematic Diagram of R0 Plant CHEMTRONICS II, Ifi CLIENT Raw water stor tank it canndge hlter Caillidfle fin" (5 micron) (1 micron) Sand Filter Treated water storage tank Rejection soopuo
  • 33. ‘P11 (Ma) S 19112 M soruonuioqg soopuo What happens to the water? REVERSE OSMOSIS WATER CONTAMINANT REJECTION TABLE Guardia cysts Cryptosporidium cycts DDT PCB E. coli bacteria Fecal bacteria Serratia marcescenes Salmonella typhi Vibrio choleriae Shigella disinteriae Sodium fluoride Sodium chloride (NaCl) Magnesium chloride Nickel sulfate NISO4 Copper sulfate CuSO4 Chlorinated pesticides Sodium nitrate NaNO3 100% 100% >99.9% >99.9% >99.9% >99.9% >99.9% >99.9% >99.9% >99.9% 99% 99% 99% >99% 99.90% 97-99% Chloride Radioactivity Potassium Zinc Bicarbonate Sulfate Calcium Strontium Nitrate +3 Ferro cyanide Calcium chloride iron Silicate Arsenic +5 Aluminum Glucose Lead 99.90% 95-99% 92-99% 95-99% 99% 95-99% 95-99% 95-99% 90-99% 96-99% 99% 95-99% 95-99% 95-99% 95-99% 98% 95-99% Mercury Nickel Copper Sodium Chromate Silica Si02 Barium Cadmium Toluane Lindane Fluoride Magnesium Sucrose Silver Lactic acid pH5 Phosphate Ammonium 95-99% 95-99% 95-99% 95-99% 95-99% 98% 95-99% 95-99% >99.9% >99.9% 90-95% 95-99% 99% 95-99% 99% 95-99% 95-99%
  • 34. Reverse Osmosis Advantages Limitations O Rejection of all dissolved 0 Higher electrical costs than solids resin-based systems (high- Q Operating costs not directly Pressure Pumps) dependant on TDS 0 Generates significant reject O Enables high cycle operation Stream (typically 20 — 30% of input 0 Requires no chemical stream) regenerants (acid/ caustic) 0 Not labor intensive ‘3 D035 110‘? Tel ect CO2 (:2) O Versatile pairings with resin-based systems ‘P11 (Ma) SQOIAJQS 1918M SOIUOJJIIIQIK) 0 Ideal for mobile applications
  • 35. M W Riaz Textile As a Case Study Oronzwoiom ¢<m. §. moaionm 9.3.. HE.
  • 36. 1311 ma) S90}A. I9S 19113 M SO}IIO. I1III9I{: ) System Data (Cooling Towers) Recirculation Rate / Pump No of Cooling Tower cell AT
  • 37. 65 Riaz Textile As a Case Study BASED ON RAW WATER BASED ON BLENDED VVATER (100% Raw Water) (30% Raw Water+70% R. O Water) wmdsetmmrlxsokmln 9- WATER ANALYSIS (0 Ci’ 0 ~ 2 +-u O- : V: v 2 : Ea Calcium hardness. ppm as P-- Q CaCO U) (D 3, Chloride. ppm as Cl 245 O
  • 38. 65 Riaz Textile As a Case Study wM mn System Evaluation Parameter Raw Water Blended water Rate of evaporation. (M3/hr) 26.25 26.25 Rate of blow down. (M3/Hr) 10.5 2.38 Make up. (M3/Hr) 36.75 28.63 C/ C 3.5— 4.0 ll--12 Reduction in blow down (M3/Hr) 8.11 Chemical Treatment Cost Antiscalant & anticorrsion 86.500/- 20.650/- Dispersant 3 l.600/- 10.75 0/- Biocide l2,040/- l2.04()/ - Cost of Acid 98.300/- l0.800/- °P1’I ('1AcI) SQOIAJQS 19181“ SC)}LIO. I1III9I{Q
  • 39. Riaz Textile As a Case Study Total Monthly Cost 228,440/— 54,240/— Cost Difference 174,200/— 2,090,400/- 3,300,000/- 3.0/- 0.5/- 3.5/- 604,800/- 1,485,600/- Total Annual Savings ZOM3/Hr RO Plant Capital cost RO operational Electrical cost PKR/ M3 RO operational Chemical cost PKR/ M3 RO operational cost PKR/ M3(Electrical+Chemical) RO operational cost PKlVAnnum(Electrical+Chemical) Actual Annual Savings with R0 Pay Back period ‘P11 ('1AcI) sooyuog 19112 M soiuonuiaqg 2 year Warranty on R0 1 year
  • 40. ‘P11 ('1AcI) sooyuog 19112 M soiuonwaqg Riaz Textile As a Case Study 2,090,400/— ZOM3/Hr DM Plant Capital cost 2,500 000/- DM Plant operational Electrical cost PKR/ M3 DM Plant operational Chemical cost PKR/ M3 DM Plant operational cost DM Plant operational cost PKlUAnnum(Electrical+Che1nical) L451 520/- Actual Annual Savings with DM Plant 638,830/- PKR/ M3 Electrical+Chemical
  • 41. 'P1’I (ma) s9otA. I9g 19121“ sotuonuxoqg RO Preceding Demineralizer Example with relatively inexpensive water and sewerage R0 cost justified above approx. 200 ppm TDS 0.5 R0 to preceed Demin. $0.50Ikgal raw water] $0.50Ikgal waste Demin. RO —-— wdegas, neutr : Linear (wdegas, neutr) O veljelje Capital and operating 100 312 TDS, ppm cost of RO included 473
  • 42. R0 Preceding Demineralizer Example with more expensive water and sewerage , .:i. ;~. ?., :.. . R0 cost justified above approx. 400 ppm TDS R0 value to precede demin, $1 .50lkgal raw 0 water, $2.00Ikgal waste §‘ 5 5 4': Demin. A l E , a;. 3° ”’ _ 3 Ft € § 2.5 —I—wdegas neutr «-9- 3. <79 - i Q 0 2 —LInear(wdegas, neutr) ' F‘ 1 5 g3 1 Capital and operating %_ 05 cost of Q 0 R0 Included 100 312 473 TDS, ppm
  • 43. & Saving Water, Cost & Energy r 1} “W” is a Big Win in Every Way, and the creative use of Membrane Solutions for System can help you to make it happen at your facility! 'P1’I ma) saoyuog 19121“ sotuonuioqg
  • 44. 9- 3 O 3: :2. 92 U3 saopua THANK YOU Presentation Designer Engr. AFAN MIRAJ CHEMTRONICS WATER SERVICES

Related Documents