PolymerConformation& ChainDimensionAman Pratap Singh Rajvi2010B2AB716P1
Model: Freely Jointed Model orRandom Flight Model Assumptions: No restrictions of – Valence Angle, Rotation &Vander-waal...
Model contd.3lhh=nll4h niilh 0h= end-to-enddistancen= number oflinks
Model contd.4niilh 0njjniiniinii llllhhh 00002...ninjjinn llllllllllh 0 03322112..........ninjijjinn llllllllllh...
Model contd. Mean square bond length: If all bonds are of same length, i.e., l Root Mean Square (RMS) end-to-end dista...
Using Gaussian DistributionFunction n= no. of segments l= length of each link Gaussian DistributionFunction=6),,(22321z...
Gaussian Distribution Functioncontd. Taking spherical coordinates7drrddrebdrw rb 22321sin),,(2223214)(22rebrw rbr=radius ...
Gaussian Distribution Functioncontd. Which is same as what we got from FreelyJointed Chain Model820022)()(nldrrwdrrwrr RM...
Considering Real Chain Restriction due to valance bond angle9cos1cos122nlr
Real Chain contd. Restrictions because of Steric Hindranceas a result of presence of bulky group10cos1cos1cos1cos122nlr D...
Real Chain contd. Correction due to excluded volume11lnCr N212)(Expansion factor which is ameasure of excluded volume220n...
Thank You12
of 12

Polymer conformation & chain dimension

Published on: Mar 4, 2016
Source: www.slideshare.net


Transcripts - Polymer conformation & chain dimension

  • 1. PolymerConformation& ChainDimensionAman Pratap Singh Rajvi2010B2AB716P1
  • 2. Model: Freely Jointed Model orRandom Flight Model Assumptions: No restrictions of – Valence Angle, Rotation &Vander-waals’ Volume Short range correlations betweenneighboring monomers are not excluded. Ideal chain models do not take interactionscaused by conformations in space intoaccount. Ideal chains allow the polymer to cross itself. Fully idealized hypothetical model.2
  • 3. Model contd.3lhh=nll4h niilh 0h= end-to-enddistancen= number oflinks
  • 4. Model contd.4niilh 0njjniiniinii llllhhh 00002...ninjjinn llllllllllh 0 03322112..........ninjijjinn llllllllllh 0 03322112cos.........ninjijjinn llllllllllh 0 03322112cos.........ninjijjill0 00cosbut So22322212... nllllh
  • 5. Model contd. Mean square bond length: If all bonds are of same length, i.e., l Root Mean Square (RMS) end-to-end distance==5nlllll nav22322212 ...nhlav2222avnlh2222222...lnnlnlllllavnlnl2
  • 6. Using Gaussian DistributionFunction n= no. of segments l= length of each link Gaussian DistributionFunction=6),,(22321zyxweb rbrdydxdz
  • 7. Gaussian Distribution Functioncontd. Taking spherical coordinates7drrddrebdrw rb 22321sin),,(2223214)(22rebrw rbr=radius ofspherical shellb=3/2nl2
  • 8. Gaussian Distribution Functioncontd. Which is same as what we got from FreelyJointed Chain Model820022)()(nldrrwdrrwrr RMS end-to-end Distance nl
  • 9. Considering Real Chain Restriction due to valance bond angle9cos1cos122nlr
  • 10. Real Chain contd. Restrictions because of Steric Hindranceas a result of presence of bulky group10cos1cos1cos1cos122nlr Dihedral angle
  • 11. Real Chain contd. Correction due to excluded volume11lnCr N212)(Expansion factor which is ameasure of excluded volume220nlr0: Excluded volume1: No excluded volume22222.)( nlClnCr NN220nlrCNUnperturbed Mean squareend-to-end distanceMean square end-to-enddistance
  • 12. Thank You12

Related Documents