Polymer-Nanomaterial Composite Solar Cells M. Faisal Halim Dorsinville Group Friday, 5 th November, 2010
Aim <ul><li>To make high efficiency solar cells that are: </li></ul><ul><ul><li>Cheap </li></ul></ul><ul><ul><li>Mechanica...
Physical Processes to Effect [1] <ul><li>Photon Absorption </li></ul><ul><li>EHP Dissociation </li></ul><ul><li>Electron a...
Composite Components <ul><li>Quantum Dots (CdSe) </li></ul><ul><li>Carbon Nanotubes (Single Walled), S-SWCNT, M-SWCNT </li...
What We Want To Do <ul><li>Immobilize/Bind/Self-Assemble Quantum Dots onto SWCNTs. [2-10] </li></ul><ul><li>Encapsulate QD...
QD Immobilization <ul><li>Provides Physical Contact for electron transfer from QD to SWCNT </li></ul><ul><ul><li>Treatment...
QD-SWCNT Encapsulation in Polymer <ul><li>Dissociates EHP (prevents recombination) [11-12]  </li></ul><ul><ul><li>Electr...
What we need to do <ul><li>Ligand exchange of decylamine with a conjugated system </li></ul><ul><li>SWCNT Surface Treatmen...
References <ul><li>Solar Energy Materials and Solar Cells Volume 87, Issues 1-4, May 2005, Pages 733-746 </li></ul><ul><li...
Results of Discussions from the Meeting <ul><li>SWCNTs: we will acid treat them (H2SO4, or something else – I will have to...
of 10

Polymer nanomaterial composite solar cells, friday, 5th november, 2010

Polymer-Nanomaterial Composite Solar Cells Group Presentation Presentation date: Friday, 5th November, 2010
Published on: Mar 4, 2016
Published in: Business      Technology      
Source: www.slideshare.net


Transcripts - Polymer nanomaterial composite solar cells, friday, 5th november, 2010

  • 1. Polymer-Nanomaterial Composite Solar Cells M. Faisal Halim Dorsinville Group Friday, 5 th November, 2010
  • 2. Aim <ul><li>To make high efficiency solar cells that are: </li></ul><ul><ul><li>Cheap </li></ul></ul><ul><ul><li>Mechanically Flexible </li></ul></ul><ul><ul><li>Have High Efficiency </li></ul></ul><ul><ul><li>Are Solution Processible </li></ul></ul><ul><ul><ul><li>Can take Advantage of Molecular Self Assembly </li></ul></ul></ul><ul><ul><ul><li>Processes are highly scalable </li></ul></ul></ul><ul><ul><li>Provide for Ease of Fabrication </li></ul></ul><ul><ul><li>Producible by Low Toxicity of Processing Methods </li></ul></ul>
  • 3. Physical Processes to Effect [1] <ul><li>Photon Absorption </li></ul><ul><li>EHP Dissociation </li></ul><ul><li>Electron and Hole Conduction </li></ul>Source: Solar Energy Materials and Solar Cells Volume 87, Issues 1-4, May 2005, Pages 733-746
  • 4. Composite Components <ul><li>Quantum Dots (CdSe) </li></ul><ul><li>Carbon Nanotubes (Single Walled), S-SWCNT, M-SWCNT </li></ul><ul><li>Polymer (Semiconducting, p-type) </li></ul>Absorption Spectrum of CdSe QDs (aq) Absorption Spectrum of SWCNTs (aq) Absorption Spectrum of 6 Layer Film of SWCNT in P3OT
  • 5. What We Want To Do <ul><li>Immobilize/Bind/Self-Assemble Quantum Dots onto SWCNTs. [2-10] </li></ul><ul><li>Encapsulate QD covered SWCNTs with a semiconducting polymer (This will give the Active Material) [11-12] </li></ul><ul><ul><li>Encapsulation is required for EHP dissociation from polymer to M-SWCNT </li></ul></ul><ul><ul><li>Amount of M-SWCNT in composite high enough (1% ww) to allow for percolation </li></ul></ul><ul><li>Sandwich by spin coating onto PEDOT:PSS coated ITO covered substrate and evaporating a metal (Al) electrode </li></ul>
  • 6. QD Immobilization <ul><li>Provides Physical Contact for electron transfer from QD to SWCNT </li></ul><ul><ul><li>Treatment of QDs </li></ul></ul><ul><ul><ul><li>ATP [2,4-10] </li></ul></ul></ul><ul><ul><li>Treatment of SWCNTs </li></ul></ul><ul><ul><ul><li>Depends on type of attachment [2-10] </li></ul></ul></ul>
  • 7. QD-SWCNT Encapsulation in Polymer <ul><li>Dissociates EHP (prevents recombination) [11-12]  </li></ul><ul><ul><li>Electron delocalized and transported to QD or SWCNT </li></ul></ul><ul><ul><li>Hole localized on polymer chain </li></ul></ul>
  • 8. What we need to do <ul><li>Ligand exchange of decylamine with a conjugated system </li></ul><ul><li>SWCNT Surface Treatments for Non-covalent binding (self assembly, based on available number of quantum dots) </li></ul>
  • 9. References <ul><li>Solar Energy Materials and Solar Cells Volume 87, Issues 1-4, May 2005, Pages 733-746 </li></ul><ul><li>Light-Induced Charge Transfer in Pyrene/CdSe-SWNT Hybrids, Volume 20, Issue 5, pages 939–946, March, 2008 </li></ul><ul><li>Tailored Single-Walled Carbon Nanotube−CdS Nanoparticle Hybrids for Tunable Optoelectronic Devices, ACS Nano, 2010, 4 (1), pp 506–512 </li></ul><ul><li>Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells, Lili Han et al 2006 Nanotechnology 17 4736 </li></ul><ul><li>CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells, Solar Energy Materials and Solar Cells, Volume 87, Issues 1-4, May 2005, Pages 733-746 </li></ul><ul><li>Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes, Materials Letters, Volume 60, Issues 29-30, December 2006, Pages 3502-3506 </li></ul><ul><li>Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells, J. Phys. Chem. Lett., 2010, 1 (20), pp 3046–3052 </li></ul><ul><li>Materials, Nanomorphology, and Interfacial Charge Transfer Reactions in Quantum Dot/Polymer Solar Cell Devices, J. Phys. Chem. Lett., 2010, 1 (20), pp 3039–3045 </li></ul><ul><li>Ligand-Tuned Shape Control, Oriented Assembly, and Electrochemical Characterization of Colloidal ZnTe Nanocrystals, Chem. Mater., 2010, 22 (16), pp 4632–4641 </li></ul><ul><li>Controlling Charge Separation and Recombination Rates in CdSe/ZnS Type I Core−Shell Quantum Dots by Shell Thicknesses, J. Am. Chem. Soc., 2010, 132 (42), pp 15038–15045 </li></ul><ul><li>Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 25 </li></ul><ul><li>Exciton Dissociation in Organic Light Emitting Diodes at the Donor-Acceptor Interface, PRL 98, 176403 (2007) </li></ul>
  • 10. Results of Discussions from the Meeting <ul><li>SWCNTs: we will acid treat them (H2SO4, or something else – I will have to look for what we may need to buy) to create defect sites where the QDs can settle and immobilize for QD-SWCNT electron conduction. </li></ul><ul><li>Devices will need to be built to compare acid treated (SWCNT) vs. untreated device performance. </li></ul><ul><li>Z-scan will need to be done for active materials, though it is unlikely that a difference will be noticable for acid treated vs. untreated SWCNT (with QD) devices. </li></ul><ul><li>At some point pump and probe femto second dynamics of treated vs. untreated devices will have to be measured. </li></ul><ul><li>AFM and TEM are unlikely to be able to distinguish between acid treated and untreated devices, though Raman might be able to tell. </li></ul><ul><li>We may have to do ligand exchange of QD surfactant – need to see what surfactant to buy. </li></ul>

Related Documents