Polymers In Medicine Jeremy C. Robinson Pierre M. Saint Louis Anoop Padmaraju
Overview <ul><li>Introduction </li></ul><ul><li>Brief History </li></ul><ul><li>Applications </li></ul><ul><ul><li>Cellop...
Biomaterials <ul><li>What are they? </li></ul><ul><li>Substances other than food or drugs contained in therapeutic or diag...
 
History <ul><li>Biomaterials not practical till 1860’s </li></ul><ul><li>1900’s Biomaterials first used </li></ul><ul><li>...
 
Cellophane <ul><li>“ Saran Wrap”, Rayon (fiber) </li></ul><ul><li>“ Regenerated” Cellulose </li></ul><ul><li>Invented 1908...
 
 
PGA, PLA, PLGA
PGA, PLA, PLGA <ul><li>First synthesized by Dupont from Glycolic acid </li></ul><ul><li>PGA, originally Dexon, absorbable ...
PGA, PLA, PLGA <ul><li>All polymers have low polydisparity index (PLA 1.6-1.9) </li></ul><ul><li>Depending on structure, p...
PGA, PLA, PLGA <ul><li>Two essentials in scaffolding: high surface to volume ratio, highly porous </li></ul><ul><ul><li>A...
Polydimethylsiloxane <ul><li>“ Silicon” </li></ul><ul><li>Lubricants and Foaming agents </li></ul><ul><li>Pacemakers and V...
Polydimethylsiloxane <ul><li>Discovered 1927, Dr. Frederick Stanley Kipping </li></ul><ul><li>Vulcanized rubber, can’t be ...
Polydimethylsiloxane <ul><li>Used in treatment of prostate carcinoma </li></ul><ul><li>Small biodegradable pellets (188 ...
Polyethylene and PMMA <ul><li>Thermoplastics, exhibit moderate to high tensile strength with moderate elongation </li></ul...
PMMA Fig. 4a PMMA disc over femoral window during the molding process Fig. 4b PMMA template after polymerization, showing ...
Polytetrafluoroethylene <ul><li>High strength and Chemical resistance </li></ul><ul><li>High modulus and tensile propertie...
Polytetrafluoroethylene <ul><li>Excellent wear and fatigue resistance </li></ul><ul><li>Vascular grafts patch injured and ...
Polyurethane <ul><li>Shoe soles, tires and foams </li></ul><ul><li>Thermoset, non-condensation step growth </li></ul><ul><...
Polyurethane <ul><li>One of the best load-bearing capacities </li></ul><ul><li>Discovered 1937, Otto Baker </li></ul><ul><...
Ventricular Assist Device
Polyurethane <ul><li>VAD, used during open heart surgery, postoperatively and in case of extreme cardiac trauma </li></ul>...
Polyurethane <ul><li>Obtained through step-growth polymerization of diisocyanates and dihydroxl compounds </li></ul><ul><l...
The Future <ul><li>Opportunities are limitless </li></ul><ul><li>We as scientists and engineers are faced with big challen...
References <ul><li>Peppas, N., Langer, R. “New challenges in bio-materials”, Science, Vol. 263, March, 1994 </li></ul><ul>...
References <ul><li>9. Ikada, Y, Yoshihiko, S, “Tissue Engineering for Therapeutic Use 4.” Elsevier, 2000, New York </li><...
References <ul><li>15.          “Polyurethane – Features and Benefits”, www.elastchem-ca.com/poly.html </li></ul><ul><li>...
The End Thank You!
of 30

PolymersInMedicine.ppt

Published on: Mar 4, 2016
Published in: Business      Technology      
Source: www.slideshare.net


Transcripts - PolymersInMedicine.ppt

  • 1. Polymers In Medicine Jeremy C. Robinson Pierre M. Saint Louis Anoop Padmaraju
  • 2. Overview <ul><li>Introduction </li></ul><ul><li>Brief History </li></ul><ul><li>Applications </li></ul><ul><ul><li>Cellophane </li></ul></ul><ul><ul><li>PGA, PLA, PLGA </li></ul></ul><ul><ul><li>Polydimethylsiloxane </li></ul></ul><ul><ul><li>Polyethylene and PMMA </li></ul></ul><ul><ul><li>Polytetrafluoroethylene </li></ul></ul><ul><ul><li>Polyurethane </li></ul></ul><ul><li>The Future </li></ul>
  • 3. Biomaterials <ul><li>What are they? </li></ul><ul><li>Substances other than food or drugs contained in therapeutic or diagnostic systems that are in contact with tissue or biological fluids </li></ul><ul><li>Why use Biomaterials? </li></ul><ul><li>Improve patient’s quality of life by replacing a defective body part with a substitute. </li></ul><ul><li>Physicians were limited to use off-the shelf supplies. </li></ul><ul><li>Novel biodegradable polymers and modified natural substances. </li></ul>
  • 5. History <ul><li>Biomaterials not practical till 1860’s </li></ul><ul><li>1900’s Biomaterials first used </li></ul><ul><li>WWII, PMMA used to replace damaged cornea </li></ul>
  • 7. Cellophane <ul><li>“ Saran Wrap”, Rayon (fiber) </li></ul><ul><li>“ Regenerated” Cellulose </li></ul><ul><li>Invented 1908, Jacques E. Brandenberger </li></ul><ul><li>Kidney Dialysis </li></ul><ul><li>Invented 1959, William J. Kolff </li></ul><ul><li>Vegetable Parchment, Natural Casings early membranes </li></ul>
  • 10. PGA, PLA, PLGA
  • 11. PGA, PLA, PLGA <ul><li>First synthesized by Dupont from Glycolic acid </li></ul><ul><li>PGA, originally Dexon, absorbable suture </li></ul><ul><li>1963 Schmitt & Polistina Invents Biodegradable suture </li></ul><ul><li>PLA & PLGA Drug delivery systems </li></ul>
  • 12. PGA, PLA, PLGA <ul><li>All polymers have low polydisparity index (PLA 1.6-1.9) </li></ul><ul><li>Depending on structure, polymers can be fit for different applications </li></ul><ul><li>Amorphous forms used in drug delivery systems </li></ul><ul><li>Crystalline forms good for scaffolding, or sutures </li></ul>
  • 13. PGA, PLA, PLGA <ul><li>Two essentials in scaffolding: high surface to volume ratio, highly porous </li></ul><ul><ul><li>Allows cells to easily proliferate for setup of pathways </li></ul></ul><ul><ul><li>Setup of pathways for nutrients </li></ul></ul>
  • 14. Polydimethylsiloxane <ul><li>“ Silicon” </li></ul><ul><li>Lubricants and Foaming agents </li></ul><ul><li>Pacemakers and Vaccine Delivery systems </li></ul>
  • 15. Polydimethylsiloxane <ul><li>Discovered 1927, Dr. Frederick Stanley Kipping </li></ul><ul><li>Vulcanized rubber, can’t be melted or dissolved </li></ul><ul><li>Low glass transition </li></ul><ul><li>Produced by hydroxyl, groups through hydrolysis, replace the 2 Cl in the monomer </li></ul><ul><li>Ring opening polymerization, Higher MW </li></ul>
  • 16. Polydimethylsiloxane <ul><li>Used in treatment of prostate carcinoma </li></ul><ul><li>Small biodegradable pellets (188 m) injected into area of body where needed. </li></ul><ul><li>Smaller doses, less toxic effects for patient </li></ul>
  • 17. Polyethylene and PMMA <ul><li>Thermoplastics, exhibit moderate to high tensile strength with moderate elongation </li></ul><ul><li>Used for Hip replacement and Fracture Fixation </li></ul><ul><li>Annual procedures approaching 5 Million </li></ul><ul><li>Metal alternatives have corrosive problems </li></ul>
  • 18. PMMA Fig. 4a PMMA disc over femoral window during the molding process Fig. 4b PMMA template after polymerization, showing molded plug
  • 19. Polytetrafluoroethylene <ul><li>High strength and Chemical resistance </li></ul><ul><li>High modulus and tensile properties with negligible elongation </li></ul><ul><li>Used for orthopedic and dental devices </li></ul><ul><li>Mechanical heart valve and implants </li></ul>
  • 20. Polytetrafluoroethylene <ul><li>Excellent wear and fatigue resistance </li></ul><ul><li>Vascular grafts patch injured and diseased areas of arteries </li></ul><ul><li>Must be flexible to allow for the difficulties of implantation and to avoid adjacent tissue irritation </li></ul>
  • 21. Polyurethane <ul><li>Shoe soles, tires and foams </li></ul><ul><li>Thermoset, non-condensation step growth </li></ul><ul><li>Low molecular weight polymer (47,000) </li></ul><ul><li>“ Bridges” the gap between rubber and plastic </li></ul>
  • 22. Polyurethane <ul><li>One of the best load-bearing capacities </li></ul><ul><li>Discovered 1937, Otto Baker </li></ul><ul><li>Major medical uses Ventricular assist device </li></ul><ul><li>Developed by Dr. Liotta, Baylor, 1950’s </li></ul><ul><li>Redefined by Pierce and Donachy in 1971 </li></ul>
  • 23. Ventricular Assist Device
  • 24. Polyurethane <ul><li>VAD, used during open heart surgery, postoperatively and in case of extreme cardiac trauma </li></ul><ul><li>Pierce and Donachy used segmented polyurethane in their VAD </li></ul><ul><li>Safe contact barrier compressive properties made function similar to heart ventricle </li></ul>
  • 25. Polyurethane <ul><li>Obtained through step-growth polymerization of diisocyanates and dihydroxl compounds </li></ul><ul><li>Injection molded </li></ul><ul><li>R.I.M. </li></ul><ul><li>Failures attributed to poor processing, not physical material properties </li></ul>
  • 26. The Future <ul><li>Opportunities are limitless </li></ul><ul><li>We as scientists and engineers are faced with big challenges </li></ul><ul><li>Potential and promise are tremendous </li></ul><ul><li>Questions! </li></ul>
  • 27. References <ul><li>Peppas, N., Langer, R. “New challenges in bio-materials”, Science, Vol. 263, March, 1994 </li></ul><ul><li>Andreadis, S., “Applications of Biomaterials”, Tissue engineering handout, February 2001, University at Buffalo. </li></ul><ul><li>“ History and Development of Biomaterials”, www.bae.ncsu.edu/Courses/bae465 </li></ul><ul><li>Fried, J. R., “Polymer Science and Technology.”, Prentice Hall, New Jersey 1995 </li></ul><ul><li>“ Cellophane Invention”, http://inventors.about.com/science/inventors/library/inventors/blcellophane.htm </li></ul><ul><li>“ First Dialysis Unit”, www.ucl.ac.uk/uro-neph/history/dialysis.htm </li></ul><ul><li>“ Dialysis and the Artificial Kidney”, www.chemengineer.about.com/science/chemengineer/library/weekly/aa120897.htm </li></ul><ul><li>www.beyonddiscovery.com </li></ul><ul><li>              </li></ul>
  • 28. References <ul><li>9. Ikada, Y, Yoshihiko, S, “Tissue Engineering for Therapeutic Use 4.” Elsevier, 2000, New York </li></ul><ul><li>  </li></ul><ul><li>10.          Pulverer, G., Schierholz, J. M., “Development of New CSF-shunt With Sustained Release of Antimicrobial Broad-Spectrum Combination.”, Baktercologie, Vol. 286, 107-123 </li></ul><ul><li>  </li></ul><ul><li>11.          Loomes, L. M., Jian Xiong, J., Brook, M. A., Underdown, B. J., McDermott, M. R., “Novel Polymer-grafted Starch Microparticles for Mucosal Delivery of Vaccines.”, Immunology, Vol. 56, 162-168, 1996 </li></ul><ul><li>  </li></ul><ul><li>12.          www.britannica.com, (keyword “polyethylene”) </li></ul><ul><li>  </li></ul><ul><li>13.          “Uses of Polymehtylmethacrylate”, www.rcsed.ac.uk (Feb 2001) </li></ul><ul><li>  </li></ul><ul><li>14.          www.britannica.com, (keyword “Polytetrafluoroethylene”) </li></ul>
  • 29. References <ul><li>15.          “Polyurethane – Features and Benefits”, www.elastchem-ca.com/poly.html </li></ul><ul><li>  </li></ul><ul><li>16.          “Pierce-Donachy Ventricular Assist Device”, www.asme.org/history/Roster/H142.html </li></ul><ul><li>  </li></ul><ul><li>17.          Liotta, D. “The Ventricular Assist Device”, www.fdliotta.org </li></ul><ul><li>  </li></ul>
  • 30. The End Thank You!

Related Documents