By: Laken Poole
DNA Replication occurs before a cell
splits apart. The replication process
takes place during mitosis. To be more
specific...
DNA replication is a process that is
very essential in every cell. If DNA
replication did not occur, cells
wouldn’t functi...
As you know, DNA is made up of two
strands. During DNA replication, an
enzyme called DNA helicase
“unzips” these two stran...
The leading strand is synthesized
continuously in the 5 prime to 3
prime direction, while the lagging
strand is synthesize...
DNA polymerase III adds nucleotides
to the end of a growing DNA strand.
DNA primase is an enzyme that
marks a starting poi...
DNA ligase joins Okazaki fragments,
which are short, newly synthesized
DNA fragments that are formed on
the lagging strand...
So you can get a better
understanding, the following slides
will demonstrate the entire DNA
replication process.
Helicase
5’
A
T
T
Helicase
A
C
C
A
A
T
C
G
G
C
T
A
G
C
A
T
C
G
G
C
3’
G
T
3’
G
= Phosphate
= Sugar
= Ad...
A
5’
T
C
G
G
T
T
C
G
G
C
T
A
G
C
A
T
C
G
G
C
= Adenine
A
A
3’
= Phosphate
= Sugar
A
Helicase
C...
A
5’
T
= Phosphate
= Sugar
A
C
G
Helicase
C
G
= Adenine
A
T
A
G
G
C
T
A
G
C
A
T
C
G
G
C
= Thymin...
A
5’
3’
T
T
C
G
C
G
T
Helicase
A
A
G
C
A
T
C
G
G
C
= Thymine
C
T
A
G
G
= Adenine
T
C
3’
= Pho...
A
5’
3’
T
T
C
G
C
G
Helicase
T
= Adenine
A
= Thymine
T
A
C
G
G
C
T
A
G
C
A
T
C
3’
= Phosphate
= ...
A
5’
3’
T
T
C
G
C
G
T
A
A
Helicase
C
A
G
C
A
T
C
G
G
C
= Thymine
T
C
T
= Adenine
G
G
3’
= Pho...
A
5’
3’
T
T
C
G
C
G
T
A
A
T
Helicase
= Adenine
= Thymine
G
C
G
A
G
C
A
T
C
G
G
C
= Cytosine
C
T...
A
5’
3’
T
T
C
G
C
G
T
A
A
T
C
G
Helicase
= Adenine
= Thymine
G
= Cytosine
C
T
C
A
T
C
G
G
C
= Gua...
A
5’
3’
T
T
C
G
C
G
T
A
A
T
G
= Adenine
= Thymine
G
C
Helicase
T
= Cytosine
C
= Guanine
A
G
C
A
T
...
A
5’
3’
T
T
C
G
C
G
T
A
A
T
= Adenine
= Thymine
G
C
G
= Cytosine
C
T
Helicase
G
A
= Guanine
A
C
T
C
...
A
5’
3’
T
T
C
G
C
G
T
A
A
T
= Adenine
= Thymine
G
C
G
= Cytosine
C
Helicase
T
G
= Guanine
A
C
A
T
C...
3’
A
T
T
5’
A
= Phosphate
= Sugar
G
C
C
G
T
A
A
= Adenine
= Thymine
T
= Cytosine
G
C
G
C
T
G
A
Helicas...
3’
A
T
T
5’
A
= Phosphate
= Sugar
G
C
C
G
T
A
A
= Adenine
= Thymine
T
= Cytosine
G
C
G
C
T
G
C
A
T
...
T
T
G
C
G
T
A
A
T
C
G
G
T
= Phosphate
= Sugar
= Adenine
= Thymine
= Cytosine
C
= Guanine
A
G
C
A
T
C
...
T
T
G
C
G
T
A
A
T
C
G
G
T
= Phosphate
= Sugar
= Adenine
= Thymine
= Cytosine
C
= Guanine
A
G
T
C
G
G
...
DNAA
5’
T
Polymerase
III C
C
T
A
T
RNA Primer 3
A
G
DNA polymerase III is able to add
nucleotides continuously to the lea...
T
T
5’
A
A
DNA
C
Polymerase
C
T
III
A
C
G
T
3’
T
RNA Primer 3
A
5’
G
As shown, RNA
primase adds an
RNA primer t...
T
T
5’
A
3’
A
DNA
C
Polymerase
C
T
III
A
C
G
T
T
RNA Primer 3
A
G
5’
As shown, RNA
primase adds an
RNA primer to ...
3’
RNA Primer
T
T
T
A
A
C
5’
A
G
G
C
DNA
T
Polymerase
A
III
C
G
T
G
5’
A
T
Now, the RNA
primase is gone and...
3’
RNA Primer
T
T
T
A
A
C
5’
A
G
G
G
G
C
T
DNA
A
Polymerase
C
III
G
T
A
5’
Now, the RNA
primase is gone an...
3’
RNA Primer
T
T
T
A
A
C
5’
A
G
G
G
G
A
A
C
T
A
DNA
Polymerase
C
G
III
T
T
5’
Now, the RNA
primase is ...
T
T
RNA Primer
T
3’
A
C
5’
A
G
C
A
The next
enzyme is
DNA
polymerase I.
G
G
G
T
A
A
A
T
T
C
DNA
G
Poly...
T
T
G
C
This enzyme
converts the
RNA into DNA
and
synthesizes
the lagging
strand in the
5’ to 3’
direction.
G
T
A
...
T
T
G
C
This enzyme
converts the
RNA into DNA
and
synthesizes
the lagging
strand in the
5’ to 3’
direction.
G
T
A
...
RNA Primer
T
3’
T
T
A
A
C
5’
A
G
G
C
G
T
A
T
C
C
T
A
DNA
G
Polymerase
A
III
C
3’
DNA G
A
Polymerase
I...
T
T
RNA Primer
T
3’
A
C
5’
A
G
C
3
A
G
5’
DNA G
G
Polymerase
I A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
...
T
T
3’
A
C
5’
A
G
C
5’
G
RNA Primer
T
3
DNA A
G
Polymerase
I G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
...
T
T
A
C
5’
A
G
C
G
5’
3’
DNA
polymerase
I has
synthesized
as far as it
could. Now
it’s time for
the next
enzyme...
5’
A
T
T
A
C
3’
G
C
5’
DNA
polymerase
I has
synthesized
as far as it
could. Now
it’s time for
the next
enzyme
P...
5’
A
T
T
G
C
5’
DNA
polymerase
I has
synthesized
as far as it
could. Now
it’s time for
the next
enzyme
RNA I T
Pri...
5’
A
T
T
G
C
5’
DNA
polymerase
I has
synthesized
as far as it
could. Now
it’s time for
the next
enzyme
G
T
C
G
...
5’
A
T
T
G
C
G
T
T
C
C
T
A
G
C
A
T
C
G
DNA
polymerase
I has
synthesized
as far as it
could. Now
it’s ti...
5’
A
T
3’
5’
A
T
Which is…
T
A
T
A
C
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
...
5’
A
T
3’
5’
A
T
Which is…
T
A
T
A
C
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
...
5’
A
T
3’
5’
A
T
Which is…
T
A
T
A
C
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
...
5’
A
T
3’
5’
A
T
Which is…
T
A
T
A
C
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
...
5’
A
T
3’
5’
DNA
Ligase!!!!
A
T
T
DNA
A
Ligase
T
A
C
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
...
T
T
C
5’
A
C
3’
5’
A
T
A
T
DNA A
Ligase
G
C
G
C
G
T
A
A
T
C
G
G
Now, DNA ligase
forms a
phosphodi...
3’
5’
T
T
A
C
G
C
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
A
G
G
G
C
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G DNA
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
T
T
3’ Now, the 5’
next
A
C
5’
A
G
C
G
T
T
A
C
G
C
enzyme,
which we
had
already
seen
before…
A
G
T
T
...
T
T
C
5’
A
C
5’
3’
A
T
A
T
A
G
C
G
C
G
Is????
G
T
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
...
T
T
C
5’
A
C
5’
3’
A
T
A
T
A
G
C
G
C
G
Is????
G
T
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
...
T
T
C
5’
A
C
5’
3’
A
T
A
T
A
G
C
G
C
G
Is????
G
T
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
...
T
T
G
3’
5’
A
C
5’
A
C
G
T
T
Yep… RNA
primase. The
cycle that had
just
happened,
begins again!
A
A
C
G
C
...
T
T
C
5’
A
C
3’
5’
A
T
A
T
A
G
C
G
C
G
T
A
A
T
C
G
G
Remember,
RNA primase
adds an RNA
primer to ...
T
T
C
5’
A
C
3’
5’
A
T
A
T
A
G
C
G
C
G
T
A
A
T
C
G
G
Remember,
RNA primase
adds an RNA
primer to ...
T
T
5’
A
3’
5’
A
C
C
G
G
T
T
The RNA
primase
leaves,
once again.
A
A
C
G
C
G
T
T
A
A
T
A
T
C
G
C...
T
T
5’
A
3’
5’
A
C
C
G
G
T
T
The RNA
primase
leaves,
once again.
A
A
C
G
C
G
T
T
A
A
T
A
T
C
G
C...
T
T
5’
A
3’
5’
A
C
C
G
G
T
T
The RNA
primase
leaves,
once again.
A
A
C
G
C
G
T
T
A
A
T
A
T
C
G
C...
A
T
T
5’
3’
A
T
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
A
G
...
A
T
T
A
C
3’
G
5’
T
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
3’
G
5’
T
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
3’
5’
T
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
A
C
G
5’
3’
T
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
C
A
T
T
C
5’
...
A
T
T
C
3’
5’
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
C
A
T
C
5’
A
G
...
T
T
5’
A
A
C
C
G
G
Adding
corresponding
nucleotides to
the strand.
A
C
G
C
5’
T
T
3’
A
G
T
T
A
A
T
...
T
T
5’
A
A
C
C
G
G
Adding
corresponding
nucleotides to
the strand.
A
C
G
C
5’
T
T
3’
A
G
T
T
A
A
T
...
T
T
5’
A
A
C
C
G
G
G
C
Adding
corresponding
nucleotides to
the strand.
A
C
5’
T
T
3’
A
G
T
T
A
A
T
...
T
T
5’
A
A
C
C
G
G
G
C
Adding
corresponding
nucleotides to
the strand.
A
C
5’
T
T
3’
A
G
T
T
A
A
T
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
A
T
5’
3’
And
replacing
the RNA
with DNA.
T
A
T
C
G
G
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
T
A
T
A
G
5’
3’
And
replacing
the RNA
with DNA.
T
A
T
C
G
G
C...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
C
G
G
And then it’s
leaves again
after
finishing ...
T
T
A
C
5’
A
G
C
G
5’
And then it’s
leaves again
after
finishing its
job..
T
T
3’
A
A
C
G
C
G
T
A
T
...
T
T
C
5’
A
C
T
A
T
A
T
A
G
C
G
G
C
G
A
T
A
A
T
3’
5’
DNA ligase
returns yet again
to form another
...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
DNA
D
Ligas
G
C
G
C
Polym
T
A
T
A
...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
T
A
G
5’
A
C
3’
5’
DNA ligase
...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
G
C
T
A
G
C
G
A
T
A
T
C
5’
A
G
C
G...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
A
T
3’
5’
Remember,
DNA
polymerase
I has the job
of replacin...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
T
A
T
5’
3’
While the
DNA ligase
leaves.
G
T
A
T
A
C
G
C
G
C
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
T
A
A
T
G
3’
5’
The DNA
polymerase
I is replacing
the RNA
with DNA...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
G
C
T
A
T
A
G
C
G
C
A
T
A
...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
G
C
T
A
T
A
G
C
G
C
A
T
A
...
T
T
C
5’
A
C
T
A
T
A
T
A
G
C
G
G
C
G
A
T
A
A
T
3’
5’
Then it leaves
after the job
is done.
A
C
G...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
A
T
3’
5’
T
A
T
C
G
C
G
G
C
G
C
T
A
T
A
G
C
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
A
T
C
G
G
C
T
A
3’
5’
T
A
T
C
G
G
C
T
A
G
C
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
G
C
G
T
A
A
T
3’
5’
The DNA
ligase has yet
one last bond
to form!
T
A...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
5’
A
T
A
T
C
G
G
C
T
A
C
3’
5’
The DNA
ligase has y...
A
T
T
C
T
A
T
A
G
C
G
G
C
G
T
A
T
A
A
5’
A
T
A
T
C
G
G
C
T
A
C
3’
5’
The DNA
ligase has y...
A
T
T
A
C
G
3’ The DNA 5’
T
ligase has yet
one last bond
to form!
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
T
A
5’
3’
As it
finishes
it’s last
job…
G
T
A
T
A
T
C
G
C
G
...
A
T
T
A
C
G
T
T
A
C
G
G
C
G
T
A
T
A
A
T
A
T
C
G
C
G
G
C
G
C
T
A
T
A
G
C
G
C
A
T
A
...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
5’
3’
Then it
leaves
again.
G
T
T
A
A
T
A
T
C
G
C
G
G
C
G...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
5’
3’
Then it
leaves
again.
G
T
T
A
A
T
A
T
C
G
C
G
G
C
G...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
5’
3’
Then it
leaves
again.
G
T
T
A
A
T
A
T
C
G
C
G
G
C
G...
T
T
C
5’
A
C
A
T
A
T
A
G
C
G
C
G
5’
3’
Then it
leaves
again.
G
T
T
A
A
T
A
T
C
G
C
G
G
C
G...
T
T
A
C
5’
A
G
C
G
3’
5’
Now we are
left with two
identical
strands of DNA.
A
T
T
A
C
G
C
G
T
T
A
A...
Keep in mind that the
DNA molecules are in a
twisted shape.
Like this…
So really
we are
left with
this.
What would
happen if a mistake
were made during
the replication
process???
Sometimes, during DNA replication,
nucleotide bases are incorrectly paired.
Naturally, during DNA replication, the
mistakes are fixed.
Sometimes, however, the mistakes
cannot be fixed and they become
mutations.
They become permanent mutations
after the next cell division. This is
because once these mistakes have
been established, t...
Special Vocabulary:
• Telomeres- Telomeres are structures found at the end
of chromosomes.
• Okazaki fragments- Okazaki fr...
Special Vocabulary:
• Telomerase- Telomerase is an enzyme that is
especially found in cancer cells. This
enzyme adds nucle...
Special Vocabulary:
• Cloning- Cloning is making genetically identical cells
that were produced from a single cell.
• Agin...
THAT’S THE END OF
THE DNA
REPLICATION
PROCESS
Thanks for
watching!!! 
of 113

Poole l dna_replication

Published on: Mar 4, 2016
Published in: Education      Technology      
Source: www.slideshare.net


Transcripts - Poole l dna_replication

  • 1. By: Laken Poole
  • 2. DNA Replication occurs before a cell splits apart. The replication process takes place during mitosis. To be more specific, it takes place in a step of mitosis called interphase. Interphase has different steps also. DNA replication takes place during the S phase of interphase.
  • 3. DNA replication is a process that is very essential in every cell. If DNA replication did not occur, cells wouldn’t function properly. DNA replication occurs so that when cells divide, the new cells have the same DNA as the cell they were made from.
  • 4. As you know, DNA is made up of two strands. During DNA replication, an enzyme called DNA helicase “unzips” these two strands. These two strands have different names, which are the lagging and leading strand.
  • 5. The leading strand is synthesized continuously in the 5 prime to 3 prime direction, while the lagging strand is synthesized discontinuously in the 5 prime to 3 prime direction.
  • 6. DNA polymerase III adds nucleotides to the end of a growing DNA strand. DNA primase is an enzyme that marks a starting point on the lagging strand. DNA polymerase I removes the starting point from the lagging strand and replaces it with DNA.
  • 7. DNA ligase joins Okazaki fragments, which are short, newly synthesized DNA fragments that are formed on the lagging strand. DNA ligase also seals repairs, and seals recombination fragments. That is how DNA replication occurs.
  • 8. So you can get a better understanding, the following slides will demonstrate the entire DNA replication process.
  • 9. Helicase
  • 10. 5’ A T T Helicase A C C A A T C G G C T A G C A T C G G C 3’ G T 3’ G = Phosphate = Sugar = Adenine = Thymine = Cytosine = Guanine DNA replication begins when the enzyme helicase unwinds and breaks the bonds between the nucleotides of the DNA molecule. 5’
  • 11. A 5’ T C G G T T C G G C T A G C A T C G G C = Adenine A A 3’ = Phosphate = Sugar A Helicase C 3’ T = Thymine = Cytosine = Guanine 5’
  • 12. A 5’ T = Phosphate = Sugar A C G Helicase C G = Adenine A T A G G C T A G C A T C G G C = Thymine T C 3’ 3’ T = Cytosine = Guanine 5’
  • 13. A 5’ 3’ T T C G C G T Helicase A A G C A T C G G C = Thymine C T A G G = Adenine T C 3’ = Phosphate = Sugar A = Cytosine = Guanine 5’
  • 14. A 5’ 3’ T T C G C G Helicase T = Adenine A = Thymine T A C G G C T A G C A T C 3’ = Phosphate = Sugar A G G C = Cytosine = Guanine 5’
  • 15. A 5’ 3’ T T C G C G T A A Helicase C A G C A T C G G C = Thymine T C T = Adenine G G 3’ = Phosphate = Sugar A = Cytosine = Guanine 5’
  • 16. A 5’ 3’ T T C G C G T A A T Helicase = Adenine = Thymine G C G A G C A T C G G C = Cytosine C T 3’ = Phosphate = Sugar A = Guanine 5’
  • 17. A 5’ 3’ T T C G C G T A A T C G Helicase = Adenine = Thymine G = Cytosine C T C A T C G G C = Guanine A G 3’ = Phosphate = Sugar A 5’
  • 18. A 5’ 3’ T T C G C G T A A T G = Adenine = Thymine G C Helicase T = Cytosine C = Guanine A G C A T C 3’ = Phosphate = Sugar A G G C 5’
  • 19. A 5’ 3’ T T C G C G T A A T = Adenine = Thymine G C G = Cytosine C T Helicase G A = Guanine A C T C 3’ = Phosphate = Sugar A G G C 5’
  • 20. A 5’ 3’ T T C G C G T A A T = Adenine = Thymine G C G = Cytosine C Helicase T G = Guanine A C A T C 3’ = Phosphate = Sugar A G G C 5’
  • 21. 3’ A T T 5’ A = Phosphate = Sugar G C C G T A A = Adenine = Thymine T = Cytosine G C G C T G A Helicase C T C 3’ = Guanine A G G C 5’
  • 22. 3’ A T T 5’ A = Phosphate = Sugar G C C G T A A = Adenine = Thymine T = Cytosine G C G C T G C A T C 3’ = Guanine A G Helicase G C 5’
  • 23. T T G C G T A A T C G G T = Phosphate = Sugar = Adenine = Thymine = Cytosine C = Guanine A G C A T C 3’ 3’ A C 5’ A G G C 5’
  • 24. T T G C G T A A T C G G T = Phosphate = Sugar = Adenine = Thymine = Cytosine C = Guanine A G T C G G C Now there are two complimentary strands of DNA. C A 3’ 3’ A C 5’ A 5’
  • 25. DNAA 5’ T Polymerase III C C T A T RNA Primer 3 A G DNA polymerase III is able to add nucleotides continuously to the leading strand of DNA. Meanwhile, the lagging strand goes through many different steps to add the nucleotides. C G T G G A T RNA G RNA Primer Primase C Leading Strand Lagging Strand A C A C 3’ T G G C 5
  • 26. T T 5’ A A DNA C Polymerase C T III A C G T 3’ T RNA Primer 3 A 5’ G As shown, RNA primase adds an RNA primer to the lagging strand. G A T G RNA Primer RNA C A Primase G A T C 3’ C G G C 5
  • 27. T T 5’ A 3’ A DNA C Polymerase C T III A C G T T RNA Primer 3 A G 5’ As shown, RNA primase adds an RNA primer to the lagging strand. G A T G C RNA Primer A G A T C 3’ C G G C RN Prim 5
  • 28. 3’ RNA Primer T T T A A C 5’ A G G C DNA T Polymerase A III C G T G 5’ A T Now, the RNA primase is gone and the next enzyme takes over. G RNA Primer C A G C A T C 3’ 3 G G C 5
  • 29. 3’ RNA Primer T T T A A C 5’ A G G G G C T DNA A Polymerase C III G T A 5’ Now, the RNA primase is gone and the next enzyme takes over. T D RNA Primer C Polym G A G C A T C 3’ 3 G G C 5
  • 30. 3’ RNA Primer T T T A A C 5’ A G G G G A A C T A DNA Polymerase C G III T T 5’ Now, the RNA primase is gone and the next enzyme takes over. DN RNA Primer C Polym G A G C A T C 3’ 3 G G C 5
  • 31. T T RNA Primer T 3’ A C 5’ A G C A The next enzyme is DNA polymerase I. G G G T A A A T T C DNA G Polymerase T 5’ G DNA RNA Primer C Polymerase AI G C A T C 3’ 3 G G C 5
  • 32. T T G C This enzyme converts the RNA into DNA and synthesizes the lagging strand in the 5’ to 3’ direction. G T A A T C G A G G A T 5’ C A T C 3’ 3 DNA G RNA Primer C Polymerase I A G T DNA G Polymerase RNA Primer T 3’ A C 5’ A G G C 5
  • 33. T T G C This enzyme converts the RNA into DNA and synthesizes the lagging strand in the 5’ to 3’ direction. G T A A T C G G C T DNA G Polymerase A III RNA Primer T 3’ A C 5’ A A G G A DNA T Polymerase G RNAI Primer C A C 5’ T C 3’ 3 G G C 5
  • 34. RNA Primer T 3’ T T A A C 5’ A G G C G T A T C C T A DNA G Polymerase A III C 3’ DNA G A Polymerase I T G G 5’ A G C 3’ 3 G RNA Primer C A 5’ This enzyme converts the RNA into DNA and synthesizes the lagging strand in the 5’ to 3’ direction. C T G C 5
  • 35. T T RNA Primer T 3’ A C 5’ A G C 3 A G 5’ DNA G G Polymerase I A T A A T A T C G C G G C T A G 3’ C A DNA C Polymerase G 3’ III 5’ RNA Primer C This enzyme converts the RNA into DNA and synthesizes the lagging strand in the 5’ to 3’ direction. A C T G C 5
  • 36. T T 3’ A C 5’ A G C 5’ G RNA Primer T 3 DNA A G Polymerase I G T A T A A T A T C G C G G C T A G C A T C DNA G 3’ Polymerase 3’ RNA Primer C A This enzyme converts the RNA into DNA and synthesizes the lagging strand in the 5’ to 3’ direction. 5’ C T G C 5
  • 37. T T A C 5’ A G C G 5’ 3’ DNA polymerase I has synthesized as far as it could. Now it’s time for the next enzyme RNA Primer T Polymerase 3 I A C G C G T A A T C G T A T C G G C T A G C C A T T C 3’ A G G G DNA 3’ RNA Primer C A 5’ C 5
  • 38. 5’ A T T A C 3’ G C 5’ DNA polymerase I has synthesized as far as it could. Now it’s time for the next enzyme Polymerase RNA Primer A T 3 I A T G C G T A A T C G C G T A T C G G C T A G C C A T T C 3’ A G G G DNA C 3’ RNA Primer C A 5’ C 5
  • 39. 5’ A T T G C 5’ DNA polymerase I has synthesized as far as it could. Now it’s time for the next enzyme RNA I T Primer A G T C G C G T A A T G T A A T C G G C T A G C C A T T C 3’ 3 A C A C 3’ G G G DNA C 3’ RNA Primer C A 5’ C 5
  • 40. 5’ A T T G C 5’ DNA polymerase I has synthesized as far as it could. Now it’s time for the next enzyme G T C G C G T A A T G T A A T C G G C T A G C C A T T C 3’ 3 A C A C 3’ RNA I T Primer A G G G DNA C 3’ RNA Primer C A 5’ C 5
  • 41. 5’ A T T G C G T T C C T A G C A T C G DNA polymerase I has synthesized as far as it could. Now it’s time for the next enzyme G G 3’ A A 5’ G DNA C 3’ 5’ * Note: The short segment of DNA that was just created is called an Okazaki Fragment. A T T A C G C G T A A T C A C 3’ G 3 RNA Primer C A C T G C 5
  • 42. 5’ A T 3’ 5’ A T Which is… T A T A C G C G G C G T A T A A T A T C G C G G C T A G C C A T T C G G G C C 3’ 3 3’ RNA Primer C A 5’ C 5
  • 43. 5’ A T 3’ 5’ A T Which is… T A T A C G C G G C G T A T A A T A T C G C G G C T A G C C A T T C G G G C C 3’ 3 3’ RNA Primer C A 5’ C 5
  • 44. 5’ A T 3’ 5’ A T Which is… T A T A C G C G G C G T A T A A T A T C G C G G C T A G C C A T T C G G G C C 3’ Ligas 5 3’ RNA Primer C A 5’ C 5
  • 45. 5’ A T 3’ 5’ A T Which is… T A T A C G C G G C G T A T A A T A T C G C G G C T A G C C A T T C G G G C C 3’ DNA 5 Ligase 3’ RNA Primer C A 5’ C 5
  • 46. 5’ A T 3’ 5’ DNA Ligase!!!! A T T DNA A Ligase T A C G C G G C G T A T A A T A T C G C G G C T A G C C A T T C G G G C C 3’ 3 3’ RNA Primer C A 5’ C 5
  • 47. T T C 5’ A C 3’ 5’ A T A T DNA A Ligase G C G C G T A A T C G G Now, DNA ligase forms a phosphodiester bond. T A T C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ C 5
  • 48. 3’ 5’ T T A C G C G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ A T T 3 A DNA Ligase G RNA Primer C A 5’ C 5
  • 49. A T T A C 3’ 5’ T T A G C G DNA G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ 3 Ligase RNA Primer C A 5’ C 5
  • 50. A T T A C 3’ 5’ T T A G C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ 3 DNA Ligas RNA Primer C A 5’ C 5
  • 51. A T T A C 3’ 5’ T T A G C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ 3 DNA Ligas RNA Primer C A 5’ C 5
  • 52. A T T A C 3’ 5’ T T A G C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ 3 D Lig RNA Primer C A 5’ C 5
  • 53. A T T A C 3’ 5’ T T A G C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Once it does that, it leaves. 3’ 3 RNA Primer C A 5’ C 5
  • 54. T T 3’ Now, the 5’ next A C 5’ A G C G T T A C G C enzyme, which we had already seen before… A G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ C 3
  • 55. T T C 5’ A C 5’ 3’ A T A T A G C G C G Is???? G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ C R 3
  • 56. T T C 5’ A C 5’ 3’ A T A T A G C G C G Is???? G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ C RNA 3
  • 57. T T C 5’ A C 5’ 3’ A T A T A G C G C G Is???? G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G C 3 3’ RNA Primer C A RNA 3 Primase C G 5’
  • 58. T T G 3’ 5’ A C 5’ A C G T T Yep… RNA primase. The cycle that had just happened, begins again! A A C G C G T A T A T A T C G C G G C T A G C C A T T C 3’ A G G C 3 3’ RNA Primer C A 5’ RNA G Primase 3 C
  • 59. T T C 5’ A C 3’ 5’ A T A T A G C G C G T A A T C G G Remember, RNA primase adds an RNA primer to the lagging strand. T A T C G G C T A G C C A T T C 3’ A G G C 3 3’ RNA Primer C A 5’ RNA G Primase C 5
  • 60. T T C 5’ A C 3’ 5’ A T A T A G C G C G T A A T C G G Remember, RNA primase adds an RNA primer to the lagging strand. T A T C G G C T A G C C A T T C 3’ A G G C 3 3’ RNA Primer C A 5’ RNA G RNA Primer 5 Primase C
  • 61. T T 5’ A 3’ 5’ A C C G G T T The RNA primase leaves, once again. A A C G C G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G C 3 3’ RNA Primer C A 5’ RNA G RNA Primase 3 Primer C
  • 62. T T 5’ A 3’ 5’ A C C G G T T The RNA primase leaves, once again. A A C G C G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ RNA RNA Primer 3 C
  • 63. T T 5’ A 3’ 5’ A C C G G T T The RNA primase leaves, once again. A A C G C G T T A A T A T C G C G G C T A G C C A T T C 3’ A G G G C 3 3’ RNA Primer C A 5’ RNA Primer R 3 C
  • 64. A T T 5’ 3’ A T T A C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C C 3’ G Leaving us to the next enzyme. 3’ 3 RNA Primer C A 5’ RNA Primer 3 C
  • 65. A T T A C 3’ G 5’ T T A C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Do you remember what that is? 3’ 3 RNA Primer C A 5’ RNA Primer 3 C
  • 66. A T T A C 3’ G 5’ T T A C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G G C C 3’ Do you remember what that is? 3’ 3 RNA Primer C A 5’ RNA Primer 3 C Po
  • 67. A T T A C 3’ 5’ T T A G C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G C D RNA Primer 3 C Poly C 3’ Did you guess yet? 3’ 3 RNA Primer C A G 5’
  • 68. A T T A C G 5’ 3’ T T A C G G C G T A T A A T A T C G C G G C T A G C C A T T C 5’ A G G C C 3’ Do you remember? 3’ 3 RNA Primer C A 5’ DNA G Polymer RNA Primer 3 C
  • 69. A T T C 3’ 5’ T A T A G C G G C G T A T A A T A T C G C G G C T A G C A T C 5’ A G G C C 3’ 3’ Did you get it right? DNA polymerase I is back again to synthesize this part of the DNA strand. 5’ 3 RNA Primer C A C T DNA G Polymerase RNA Primer 3 I C
  • 70. T T 5’ A A C C G G Adding corresponding nucleotides to the strand. A C G C 5’ T T 3’ A G T T A A T A T C G C G G C T A G C A T C 3’ A G G C 3 RNA Primer C A C 5’ DNA T Polymerase G RNA Primer 5 I C 3’
  • 71. T T 5’ A A C C G G Adding corresponding nucleotides to the strand. A C G C 5’ T T 3’ A G T T A A T A T C G C G G C T A G C A T C 3’ A G G C 3 RNA Primer C A 5’ DNA C Polymerase T I G RNA Primer 5 3’ C
  • 72. T T 5’ A A C C G G G C Adding corresponding nucleotides to the strand. A C 5’ T T 3’ A G T T A A T A T C G C G G C T A G C A T C 3’ A G G C 3 RNA Primer C DNA A Polymerase C I T C 5’ 3’ G G RNA Primer 5 C
  • 73. T T 5’ A A C C G G G C Adding corresponding nucleotides to the strand. A C 5’ T T 3’ A G T T A A T A T C G C G G C T A G C A T A T C 3’ A G C G G C 3 DNA C RNA Primer G Polymerase A G I C 5’ 3’ RNA Primer 5 C G
  • 74. T T C 5’ A C A T A T A G C G G C G T A A T 5’ 3’ And replacing the RNA with DNA. T A T C G G C T A G C G C A T A T C 3’ A G C G G C 3 DNA G RNA Primer G C Polymerase T I A C 5’ 3’ RNA Primer 5 C G
  • 75. T T C 5’ A C A T A T A G C G C G T A T A G 5’ 3’ And replacing the RNA with DNA. T A T C G G C T A G C G C A T A T C 3’ A G C G G C 3 5’ DNA T A Polymerase G C RNA Primer G I C 3’ RNA Primer 5 C G
  • 76. T T C 5’ A C A T A T A G C G G C G T A T A A T C G G And then it’s leaves again after finishing its job.. A G 5’ C T 3’ T T A C G C A T A T C 3’ A G C G G C 3 5’ 3’ DNA G C Polymerase G C I RNA Primer 5 C G
  • 77. T T A C 5’ A G C G 5’ And then it’s leaves again after finishing its job.. T T 3’ A A C G C G T A T T A T A C G C G C T A G C G C A T A T C 3’ A G C G G C 3 Meanwhile… G T 5’ 3’ DNA Polymer C A I G RNA Primer 5 C G
  • 78. T T C 5’ A C T A T A T A G C G G C G A T A A T 3’ 5’ DNA ligase returns yet again to form another phosphodiester bond. A C G G C T A G C G T A T C G C G G C DN Liga C A 3’ T 3 C G T 5’ 3’ DNA Polymer C A I G RNA Primer 5 C G
  • 79. A T T C T A T A G C G G C G T A T A A T A T C G C G DNA D Ligas G C G C Polym T A T A G C G C A T A T C 5’ A G C G G C C 3’ 3’ 5’ DNA ligase returns yet again to form another phosphodiester bond. 5’ 3’ 3 RNA Primer 5 C G
  • 80. A T T C T A T A G C G G C G T A T A A T A T C G C G G C T A G 5’ A C 3’ 5’ DNA ligase returns yet again to form another phosphodiester bond. G D Polym DNA C Ligase T A C G C A T A T C 3’ 3 G C G G C 5’ 3’ RNA Primer 5 C G
  • 81. A T T C T A T A G C G G C G T A T A A T A T C G G C T A G C G A T A T C 5’ A G C G G C C 3’ 3’ 5’ DNA ligase returns yet again to form another phosphodiester bond. 5’ 3’ 3 DNA G G Ligase C C T DN A Polym C I RNA Primer 5 C G
  • 82. T T C 5’ A C A T A T A G C G G C G T A A T 3’ 5’ Remember, DNA polymerase I has the job of replacing RNA with DNA. T A T C G G C T A G C G A T A C 3’ A G C G C DNA G G LigaseC C T 5’ 3’ 3 DNA C Polyme T I A G RNA Primer 5 C G
  • 83. T T C 5’ A C A T A T A G C G C G T A T 5’ 3’ While the DNA ligase leaves. G T A T A C G C G C G T A G C A T C 3’ A G G C T 3’ G DNA Ligase C A DNA Polymeras T A C G I RNA Primer 5 C G G 5’ 3 C
  • 84. T T C 5’ A C A T A T A G C G C G T A A T G 3’ 5’ The DNA polymerase I is replacing the RNA with DNA. T A T C G C G G C G C DNA T A T Ligase A G C G C A T C 3’ A G G C 3 T DNA C G Polymerase RNA Primer 5 G IC A 5’ 3’
  • 85. A T T C T A T A G C G G C G T A T A A T A T C G C G G C G C T A T A G C G C A T A T C 5’ A G C G C C 3’ 3’ 5’ 5’ 3’ 3 DNA Ligas DNA G Polymerase 5 C G
  • 86. A T T C T A T A G C G G C G T A T A A T A T C G C G G C G C T A T A G C G C A T A T C 5’ A G C G C C 3’ 3’ 5’ 5’ 3’ 3 L DNA G Polymerase 5 C G
  • 87. T T C 5’ A C T A T A T A G C G G C G A T A A T 3’ 5’ Then it leaves after the job is done. A C G C G G C G C T A T A G C G C A T A T C 3’ T G C G C 3 5’ 3’ G DNA 5 C Polyme G
  • 88. T T C 5’ A C A T A T A G C G G C G T A A T 3’ 5’ T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 Then it leaves after the job is done. 5’ 3’ 5D
  • 89. T T C 5’ A C A T A T A G C G G C G T A A T C G G C T A 3’ 5’ T A T C G G C T A G C G C A T A T C 3’ A G C G G C G C 3 The DNA ligase has yet one last bond to form! 5’ 3’ D Lig 5
  • 90. T T C 5’ A C A T A T A G C G G C G T A A T 3’ 5’ The DNA ligase has yet one last bond to form! T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 5’ 3’ DN Liga 5
  • 91. A T T C T A T A G C G G C G T A T A A 5’ A T A T C G G C T A C 3’ 5’ The DNA ligase has yet one last bond to form! C G C T A G C G C A T A T C 3’ G G C G G C G C 3 5’ 3’ DNA Ligase 5
  • 92. A T T C T A T A G C G G C G T A T A A 5’ A T A T C G G C T A C 3’ 5’ The DNA ligase has yet one last bond to form! C G C T A G C G C A T A T C 3’ G G C G C 3 5’ 3’ G G DNA Ligase C 5
  • 93. A T T A C G 3’ The DNA 5’ T ligase has yet one last bond to form! T A C G G C G T A T A A T A T C G C G G C G C T A T A G C G C A T A T C 5’ A G C G C C 3’ 5’ 3’ G G DNA Ligase C 3 5
  • 94. T T C 5’ A C A T A T A G C G C G T A 5’ 3’ As it finishes it’s last job… G T A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G C 3 5’ 3’ DNA G GLigase C 5
  • 95. A T T A C G T T A C G G C G T A T A A T A T C G C G G C G C T A T A G C G C A T A T C 5’ A G C G C C 3’ 5’ 3’ As it finishes it’s last job… 5’ 3’ DNA G GLigase C 3 5
  • 96. T T C 5’ A C A T A T A G C G C G 5’ 3’ Then it leaves again. G T T A A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C 3 G G C 5’ 3’ G DNA C 5
  • 97. T T C 5’ A C A T A T A G C G C G 5’ 3’ Then it leaves again. G T T A A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 5’ 3’ DNA 5
  • 98. T T C 5’ A C A T A T A G C G C G 5’ 3’ Then it leaves again. G T T A A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 5’ 3’ 5
  • 99. T T C 5’ A C A T A T A G C G C G 5’ 3’ Then it leaves again. G T T A A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 5’ 3’ 5
  • 100. T T A C 5’ A G C G 3’ 5’ Now we are left with two identical strands of DNA. A T T A C G C G T T A A T A T C G C G G C G C T A T A G C G C A T A T C 3’ A G C G G C G C 3 5’ 3’ 5
  • 101. Keep in mind that the DNA molecules are in a twisted shape.
  • 102. Like this…
  • 103. So really we are left with this.
  • 104. What would happen if a mistake were made during the replication process???
  • 105. Sometimes, during DNA replication, nucleotide bases are incorrectly paired.
  • 106. Naturally, during DNA replication, the mistakes are fixed.
  • 107. Sometimes, however, the mistakes cannot be fixed and they become mutations.
  • 108. They become permanent mutations after the next cell division. This is because once these mistakes have been established, the cell no longer recognizes them as errors.
  • 109. Special Vocabulary: • Telomeres- Telomeres are structures found at the end of chromosomes. • Okazaki fragments- Okazaki fragments are short, newly formed DNA segments. • DNA ligase- DNA ligase forms a phosphodiester bond, joining the Okazaki fragments into a continuous strand of DNA.
  • 110. Special Vocabulary: • Telomerase- Telomerase is an enzyme that is especially found in cancer cells. This enzyme adds nucleotides to telomeres. • Cancer- Cancer is a disorder when some of the body’s cells lose the ability to control growth. • Transplanted cells- Transplanted cells are injected into your body to replace damaged or diseased cells.
  • 111. Special Vocabulary: • Cloning- Cloning is making genetically identical cells that were produced from a single cell. • Aging- Aging is the process of growing older.
  • 112. THAT’S THE END OF THE DNA REPLICATION PROCESS
  • 113. Thanks for watching!!! 