Universidad politécnica estatal del Carchi
Módulo Algebra Página 1
Universidad politécnica estatal
del Carchi
FACULTAD DE ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 2
Contenido
INTRODUCCIÓN....................................
Universidad politécnica estatal del Carchi
Módulo Algebra Página 3
INTRODUCCIÓN
El álgebra es una rama de las matemáticas ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 4
OBJETIVOS
OBJETIVO GENERAL
 Recopilar toda la informac...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 5
CONJUNTO DE NÚMEROS NATURALES
Ciertos conjuntos de núme...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 6
PROPIEDADES DE LOS NÚMEROS REALES
Propiedad transitiva ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 7
EXPONENTES Y RADICALES
Exponentes
Un exponente es un va...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 8
y = raíz
√ =signo radical
Leyes radicales
√
√
√ √ √
√
√...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 9
EXPRESIONES ALGEBRAICAS
Se llama a un conjunto de letra...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 10
Resta o sustracción.- se escribe el minuendo con sus p...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 11
¿QUÉ ES UNA ECUACIÓN?
Una ecuación dice que dos cosas ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 12
Un término es o bien un número o
variable solo, o núme...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 13
PRODUCTOS NOTABLES
Binomio al cuadrado
Binomio de suma...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 14
= x 3
+ 9x2
+ 27x + 27
Binomio de resta al cubo
Un bin...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 15
(x + 2) (x + 3) =
= x2
+ (2 + 3)x + 2 · 3 =
= x2
+ 5x ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 16
FACTORIZACIÓN
Con frecuencia se necesita expresar o tr...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 17
( ) ( )
FACTORIZACIÓN POR AGRUPAMIENTO.
Algunas veces ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 18
4x – 12x + 10 = 3x + 24x + 192
4x – 12x – 3x – 24x = 1...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 19
SILABO
I. DIRECCIONAMIENTO ESTRATÉGICO
UPEC – MISIÓN M...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 20
TELEFONO: 0986054587 062-932310 e-mail: oscar.lomas@up...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 21
 Soler F. y otros. (2009). Fundamentos de Matemáticas...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 22
Competencia ESPECÍFICA - MÓDULO: (Escriba una que guar...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 23
métodos.
6. TEÓRICO
PRÁCTICO
AVANZADO
CREAR
Construir ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 24
IV. METODOLOGÍA DE FORMACIÓN DEL PERFIL:
LOGROS DE
AP
...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 25
Radicación
Propiedades
fundamentales
Aplicaciones
Hace...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 26
10. Resúmenes.
11. Ejercicios de fijación.
CONVERSACIÓ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 27
Plantear alternativas
mediante la aplicación de la
mat...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 28
a la solución de problemas
del entorno.
cuadráticas.
A...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 29
Diferenciar los conceptos básicos
utilizados para el d...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 30
planteados. para el diseño. Trabajos
Consultas
Partici...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 31
LOGROS DE APRENDIZAJE
(Acciones sistémicas, ELEMENTOS
...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 32
Plantear alternativas mediante la
aplicación de la mat...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 33
VII. Bibliografía.
BÁSICA: (Disponible en la UPEC en f...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 34
Universidad politécnica estatal del Carchi
Módulo Algebra Página 35
Universidad politécnica estatal del Carchi
Módulo Algebra Página 36
Universidad politécnica estatal del Carchi
Módulo Algebra Página 37
Universidad politécnica estatal del Carchi
Módulo Algebra Página 38
Universidad politécnica estatal del Carchi
Módulo Algebra Página 39
Universidad politécnica estatal del Carchi
Módulo Algebra Página 40
Universidad politécnica estatal del Carchi
Módulo Algebra Página 41
Universidad politécnica estatal del Carchi
Módulo Algebra Página 42
Universidad politécnica estatal del Carchi
Módulo Algebra Página 43
Universidad politécnica estatal del Carchi
Módulo Algebra Página 44
Universidad politécnica estatal del Carchi
Módulo Algebra Página 45
Universidad politécnica estatal del Carchi
Módulo Algebra Página 46
Universidad politécnica estatal del Carchi
Módulo Algebra Página 47
N-
NOMBRE
S
SEX
O
EDA
D
FECHA DE
COMPRA
FECHA
ACTUAL
B...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 48
1
2 patricia F 18
01/01/201
2
29/07/201
3
EQIPOS DE
CO...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 49
PRIMERO: B
Año de
compra
Tipo costo
Valor de
rescate
P...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 50
Universidad politécnica estatal del Carchi
Módulo Algebra Página 51
Universidad politécnica estatal del Carchi
Módulo Algebra Página 52
Universidad politécnica estatal del Carchi
Módulo Algebra Página 53
Universidad politécnica estatal del Carchi
Módulo Algebra Página 54
Universidad politécnica estatal del Carchi
Módulo Algebra Página 55
Universidad politécnica estatal del Carchi
Módulo Algebra Página 56
Universidad politécnica estatal del Carchi
Módulo Algebra Página 57
Universidad politécnica estatal del Carchi
Módulo Algebra Página 58
PRIMERO: B
Año de
compra
EQUIPOS costo
Valor de
rescat...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 59
Universidad politécnica estatal del Carchi
Módulo Algebra Página 60
Universidad politécnica estatal del Carchi
Módulo Algebra Página 61
Universidad politécnica estatal del Carchi
Módulo Algebra Página 62
Universidad politécnica estatal del Carchi
Módulo Algebra Página 63
UNIVERSIDADA D POLITECNICA ESTATAL DEL CARCHI
DESARROL...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 64
Suma y resta de fracciones algebraicas
Para sumar y re...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 65
Para multiplicar fracciones algebraicas procederemos i...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 66
Cociente de fracciones algebraicas
Opera:
Hacemos el p...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 67
EJERCICIOS
1. SUMA LAS FRACCIONES ALGEBRAICAS:
Universidad politécnica estatal del Carchi
Módulo Algebra Página 68
RESTA DE FRACCIONES ALGEBRAICAS
Universidad politécnica estatal del Carchi
Módulo Algebra Página 69
2. MULTIPLICA LAS FRACCIONES ALGEBRAICAS:
3. DIVIDE LA...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 70
UNIVERSIDAD POLITECNICA ESTATAL DEL CARCHI
DESARROLLO ...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 71
EJEMPLOS DE ECUACIONES LINEALES
Despejamos la incógnit...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 72
iii) Las dos rectas son paralelas (no se intersectan),...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 73
UNIVERSIDADA D POLITECNICA ESTATAL DEL CARCHI
DESARROL...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 74
Como contrapartida, diremos que una parábola es la rep...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 75
Si a < 0 (negativo) la parábola es convexa o con punta...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 76
Además, cuanto mayor sea |a| (el valor absoluto de a),...
Universidad politécnica estatal del Carchi
Módulo Algebra Página 77
Universidad politécnica estatal del Carchi
Módulo Algebra Página 78
of 78

Portafolio del modulo de algebra

Published on: Mar 4, 2016
Published in: Career      
Source: www.slideshare.net


Transcripts - Portafolio del modulo de algebra

  • 1. Universidad politécnica estatal del Carchi Módulo Algebra Página 1 Universidad politécnica estatal del Carchi FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES Escuela de Desarrollo Integral Agropecuario Módulo “ALGEBRA” TANIA LORENA YEPEZ PRIMER NIVEL PARALELO: “B” Ing. Oscar René Lomas Reyes Marzo 2013 – Agosto 2013
  • 2. Universidad politécnica estatal del Carchi Módulo Algebra Página 2 Contenido INTRODUCCIÓN............................................................................................................................. 3 OBJETIVOS................................................................................................................................. 4 CONJUNTO DE NÚMEROS NATURALES..................................................................................... 5 PROPIEDADES DE LOS NÚMEROS REALES................................................................................. 6 EXPONENTES Y RADICALES........................................................................................................ 7 EXPRESIONES ALGEBRAICAS ..................................................................................................... 9 ¿QUÉ ES UNA ECUACIÓN?....................................................................................................... 11 Partes de una ecuación........................................................................................................... 11 ¡Exponente!............................................................................................................................. 12 PRODUCTOS NOTABLES .......................................................................................................... 13 FACTORIZACIÓN...................................................................................................................... 16 FACTORIZACIÓN POR AGRUPAMIENTO.................................................................................. 17 ECUACIONES LINEALES............................................................................................................ 17 SILABO......................................................................................................................................... 19
  • 3. Universidad politécnica estatal del Carchi Módulo Algebra Página 3 INTRODUCCIÓN El álgebra es una rama de las matemáticas que se ocupa de estudiar las propiedades generales de las operaciones aritméticas y lo números para generar procedimientos que puedan globalizarse para todos los casos análogos. Esta rama se caracteriza por hacer implícitas las incógnitas dentro de la misma operación; ecuación algebraica. El álgebra continuó su constante progreso en la antigua Grecia. Los griegos usaban el álgebra para expresar ecuaciones y teoremas, un ejemplo es el Teorema de Pitágoras. El Álgebra es el área de las matemáticas donde las letras (como x o y) u otros símbolos son usados para representar números desconocidos. Por ejemplo: en x - 5 = 2, x es desconocido, pero puede resolverse sumando 5 a ambos lados del signo igual (=), así: x - 5 = 2 x - 5 + 5 = 2 + 5 x + 0 = 7 x = 7 (la respuesta) Se realizara el estudio tanto de números reales, números enteros positivos, negativos , fraccionarios , productos notables, factorización , sistemas de ecuaciones lineales aplicadas a nuestra carrera.
  • 4. Universidad politécnica estatal del Carchi Módulo Algebra Página 4 OBJETIVOS OBJETIVO GENERAL  Recopilar toda la información de cada tema ya visto en el módulo de algebra, para que sirva de guía base para nuestro estudio. OBJETIVOS ESPECÍFICOS  Elaborar el portafolio estudiantil  Analizar la información recolectada que servirá de base de estudio para la evaluación.  Trabajar en forma grupal en la recolección de la información
  • 5. Universidad politécnica estatal del Carchi Módulo Algebra Página 5 CONJUNTO DE NÚMEROS NATURALES Ciertos conjuntos de números tienen nombres especiales. Los números 1,2,3 y así sucesivamente , forman el conjunto de los números enteros positivos o números naturales. Conjunto de los enteros positivos = (1, 2,3…) Los enteros positivos junto con el cero, y los enteros negativos-1,-2,-3…… forman el conjunto de los enteros. Conjunto de enteros = (…,-3,-2,-1, 0, 1, 2,3,…) El conjunto de los números racionales consiste en números como y , que pueden escribirse como una razón (cociente) de dos enteros. Esto es, un numero racional es aquél que puede escribirse como donde p y q son enteros y q ≠ 0. El entero 2 es racional puesto que 2 = . De hecho todo entero es racional. Los números que se representan mediante decimales no periódicos que terminan se conocen como números irracionales. Los números y √ son ejemplos de números irracionales. Junto, los números racionales y los números irracionales forman el conjunto de los números reales. Los números reales pueden representarse por puntos en una recta. Primeros se selecciona un punto de la recta para representar el cero. Las posiciones a la derecha del origen se consideran positivas y las de la izquierda negativas
  • 6. Universidad politécnica estatal del Carchi Módulo Algebra Página 6 PROPIEDADES DE LOS NÚMEROS REALES Propiedad transitiva de igualdad.-Dos números iguales a un tercer número son iguales entre sí. Propiedad de cerradura de la suma y la multiplicación.- Dos números pueden sumarse o multiplicarse y el resultado en cada caso es un número real. Propiedad conmutativa de la suma y la multiplicación.- Dos números pueden sumarse y multiplicarse en cualquier orden. Propiedad asociativa de la suma y la multiplicación.- En la suma o en la multiplicación, los números pueden agruparse en cualquier orden. ( ) ( ) ( ) ( ) Propiedad de la identidad.- existen números reales denotados 0 y 1 tales que para todo número real a. Propiedad del inverso.- Para cada número real a, existe un único número real denotado poa –a ( ) Propiedad distributiva.- establece que multiplicar una suma por un número da el mismo resultado que multiplicar cada sumando por el número y después sumar todos los productos. ( ) ( )
  • 7. Universidad politécnica estatal del Carchi Módulo Algebra Página 7 EXPONENTES Y RADICALES Exponentes Un exponente es un valor índice que me indica el número de veces que se va a multiplicar otro valor conocido como base. El exponente se coloca arriba y a la derecha del valor base. Por ejemplo:  b es el valor base y -5 es el exponente  -2 es el valor base y 7 es el exponente Leyes de los exponentes ( )( ) ( ) ( ) ( ) ( ) RADICALES La radicación es la operación inversa a la potenciación. Se llama raíz enésima de un número “x” a otro número “y”, que elevado a la “n” da como resultado “x”. √ n = índice x = radicando
  • 8. Universidad politécnica estatal del Carchi Módulo Algebra Página 8 y = raíz √ =signo radical Leyes radicales √ √ √ √ √ √ √ √ √ √ √ √ ( √ )
  • 9. Universidad politécnica estatal del Carchi Módulo Algebra Página 9 EXPRESIONES ALGEBRAICAS Se llama a un conjunto de letras y números ligados por los signos de las operaciones aritméticas. Monomio: Se llama monomio a la expresión algebraica que tiene un solo término. Ejemplos de expresiones algebraicas de un solo término: Binomio: Se llama binomio a la expresión algebraica que tiene dos términos. Ejemplos de expresiones algebraicas de dos términos: Trinomio: Se llama trinomio a la expresión algebraica que tiene tres términos. Ejemplo: Las expresiones algebraicas que contienen más de tres términos se llaman Polinomios. Suma o adición.- es una operación que tiene por objeto reunir dos o más expresiones algebraicas en una sola expresión algebraica.
  • 10. Universidad politécnica estatal del Carchi Módulo Algebra Página 10 Resta o sustracción.- se escribe el minuendo con sus propios signos y a continuación el sustraendo con los signos cambiados y se reducen los términos semejantes. Multiplicación.- se multiplica el monomio por cada uno de los términos del polinomio, teniendo en cuenta en cada caso la regla de los signos , y se separan los productos parciales con sus propios signos. División.- se divide cada uno de los términos del polinomio por el monomio separando los cocientes parciales con sus propios signos.
  • 11. Universidad politécnica estatal del Carchi Módulo Algebra Página 11 ¿QUÉ ES UNA ECUACIÓN? Una ecuación dice que dos cosas son iguales. Tendrá un signo de igualdad "=", por ejemplo: x + 2 = 6 Lo que esta ecuación dice: lo que está a la izquierda (x + 2) es igual que lo que está en la derecha (6) Así que una ecuación es como una afirmación "esto es igual a aquello" Partes de una ecuación Para que la gente pueda hablar de ecuaciones, hay nombres para las diferentes partes (¡mejor que decir "esta cosa de aquí"!) Aquí tienes una ecuación que dice 4x-7 es igual a 5, y todas sus partes: Una variable es un símbolo para un número que todavía no conocemos. Normalmente es una letra como x o y. Un número solo se llama una constante. Un coeficiente es un número que está multiplicando a una variable (4x significa 4 por x, así que 4 es un coeficiente) Un operador es un símbolo (como +, ×, etc) que representa una operación (es decir, algo que quieres hacer con los valores).
  • 12. Universidad politécnica estatal del Carchi Módulo Algebra Página 12 Un término es o bien un número o variable solo, o números y variables multiplicados juntos. Una expresión es un grupo de términos (los términos están separados por signos + o -) Ahora podemos decir cosas como "esa expresión sólo tiene dos términos", o "el segundo término es constante", o incluso "¿estás seguro de que el coeficiente es 4?" ¡Exponente! El exponente (como el 2 en x2 ) dice cuántas veces usar el valor en una multiplicación. Ejemplos: 82 = 8 × 8 = 64 y3 = y × y × y y2 z = y × y × z Los exponentes hacen más fácil escribir y usar muchas multiplicaciones Ejemplo: y4 z2 es más fácil que y × y × y × y × z × z, o incluso yyyyzz
  • 13. Universidad politécnica estatal del Carchi Módulo Algebra Página 13 PRODUCTOS NOTABLES Binomio al cuadrado Binomio de suma al cuadrado Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo. (a + b)2 = a2 + 2 · a · b + b2 (X + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9 Binomio de resta al cuadrado Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo. (a − b)2 = a2 − 2 · a · b + b2 (2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9 Suma por diferencia Una suma por diferencia es igual a diferencia de cuadrados. (a + b) · (a − b) = a2 − b2 (2x + 5) · (2x - 5) = (2 x)2 − 52 = 4x2 − 25 Binomio al cubo Binomio de suma al cubo Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo. (a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3 (x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =
  • 14. Universidad politécnica estatal del Carchi Módulo Algebra Página 14 = x 3 + 9x2 + 27x + 27 Binomio de resta al cubo Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo. (a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3 (2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 = = 8x 3 - 36 x2 + 54 x - 27 Trinomio al cuadrado Un trinomio al cuadrado es igual al cuadrado del primero, más el cuadrado del seguno, más el cuadrado del tercero, más el doble del primero por el segundo, más el doble del primero por el tercero, más el doble del segundo por el tercero. (a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c (x2 − x + 1)2 = = (x2 )2 + (−x)2 + 12 +2 · x2 · (−x) + 2 x2 · 1 + 2 · (−x) · 1 = = x4 + x2 + 1 − 2x3 + 2x2 − 2x = = x4 − 2x3 + 3x2 − 2x + 1 Suma de cubos a3 + b3 = (a + b) · (a2 − ab + b2 ) 8x3 + 27 = (2x + 3) (4x2 - 6x + 9) Diferencia de cubos a3 − b3 = (a − b) · (a2 + ab + b2 ) 8x3 − 27 = (2x − 3) (4x2 + 6x + 9) Producto de dos binomios que tienen un término común (x + a) (x + b) = x2 + ( a + b) x + ab
  • 15. Universidad politécnica estatal del Carchi Módulo Algebra Página 15 (x + 2) (x + 3) = = x2 + (2 + 3)x + 2 · 3 = = x2 + 5x + 6
  • 16. Universidad politécnica estatal del Carchi Módulo Algebra Página 16 FACTORIZACIÓN Con frecuencia se necesita expresar o transformar a un polinomio dado en el producto de dos o más polinomios de menor grado .este proceso se llama factorización y nos permite transformar polinomios complejos en el producto de polinomios simples. Factorización por factor común. Cuando en los diversos términos de un polinomio participa un mismo factor, se dice que se le saca como factor común, para lo cual, se escribe e inmediatamente, después, dentro de un paréntesis se anotan los cocientes que resulten de dividir cada uno de los términos del polinomio entre el factor común. ( ) ( ) Factorización de una diferencia de cuadros. Se sabe que: ( )( ) ; por lo tanto una diferencia de cuadrados, es igual al producto de dos binomios conjugados. ( )( ) Factorización de un cuadrado perfecto Para factorizar un trinomio cuadrado perfecto, una vez que ha sido identificado como tal, con apoyo de los productos notables, se extrae raíz cuadrada al primero y tercer término del trinomio separándose estas raíces por medio del signo del segundo término y elevando este binomio al cuadrado: ( )( ) Factorización de una suma o diferencia de cubos Se sabe que: ( )( ) ( )( ) Factorización de cubos perfectos de binomios.
  • 17. Universidad politécnica estatal del Carchi Módulo Algebra Página 17 ( ) ( ) FACTORIZACIÓN POR AGRUPAMIENTO. Algunas veces en un polinomio los términos no contienen ningún factor común, pero pueden ser separados en grupos de términos con factor común. Este método consiste en formar grupos, los más adecuados, para factorizar cada uno como más convenga en cada caso y lograr finalmente la factorización total de la expresión. ( ) ( ) ( )( ) FACTORIZACIÓN DE UN TRIN0MIO DE LA FORMA ( )( ) ( )( ) ECUACIONES LINEALES Sabemos que una ecuación lineal o de primer grado es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia (elevadas a uno, que no se escribe). Son llamadas lineales porque se pueden representar como rectas en el sistema cartesiano. Se pueden presentar tres tipos de ecuaciones lineales: a) Ecuaciones lineales propiamente tales En este tipo de ecuación el denominador de todas las expresiones algebraicas es igual a 1 (no se presentan como fracción, aunque el resultado sí puede serlo). Para proceder a la resolución se debe: Eliminar paréntesis. Dejar todos los términos que contengan a "x" en un miembro y los números en el otro. Luego despejar "x" reduciendo términos semejantes. Ejemplo: 4x – 2(6x – 5) = 3x + 12(2x + 16)
  • 18. Universidad politécnica estatal del Carchi Módulo Algebra Página 18 4x – 12x + 10 = 3x + 24x + 192 4x – 12x – 3x – 24x = 192 – 10 –35x = 182 b) Ecuaciones Fraccionarias En este tipo de ecuación lineal el denominador de a lo menos una de las expresiones algebraicas es diferente de 1 (es una fracción). Para proceder a la resolución se debe: Llevar a ecuación lineal (eliminar la fracción) multiplicando la ecuación por el mínimo común múltiplo de los denominadores (m.c.m.) Ejemplo: C . ECUACIONES LITERALES Pueden ser lineales o fraccionarias. Si son fraccionarias, se llevan al tipo lineal, pero en el paso de reducir términos semejantes se factoriza por "x" para despejarla.
  • 19. Universidad politécnica estatal del Carchi Módulo Algebra Página 19 SILABO I. DIRECCIONAMIENTO ESTRATÉGICO UPEC – MISIÓN MISIÓN - ESCUELA Formar profesionales humanistas, emprendedores y competentes, poseedores de conocimientos científicos y tecnológicos; comprometida con la investigación y la solución de problemas del entorno para contribuir con el desarrollo y la integración fronteriza La Escuela de Desarrollo Integral Agropecuario contribuye al desarrollo Provincial, Regional y Nacional, entregando profesionales que participan en la producción, transformación, investigación y dinamización del sector agropecuario y agroindustrial, vinculados con la comunidad, todo esto con criterios de eficiencia y calidad UPEC - VISIÓN VISIÓN – ESCUELA Ser una Universidad Politécnica acreditada por su calidad y posicionamiento regional Liderar a nivel regional el proceso de formación y lograr la excelencia académica generando profesionales competentes en Desarrollo Integral Agropecuario, con un sólido apoyo basado en el profesionalismo y actualización de los docentes, en la investigación, criticidad y creatividad de los estudiantes, con una moderna infraestructura que incorpore los últimos adelantos tecnológicos, pedagógicos y que implique un ejercicio profesional caracterizado por la explotación racional de los recursos naturales, producción limpia, principios de equidad, participación, ancestralidad, que den seguridad y consigan la soberanía alimentaria. ÁREA CONOCIMIENTO ESCUELA CINE- UNESCO SUB-ÁREA CONOCIMIENTO CINE- UNESCO Agricultura. Agricultura, Silvicultura y Pesca. II. DATOS BÁSICOS DEL MÓDULO “ALGEBRA”: CÓDIGO NIVEL PRIMERO DOCENTE: Oscar René Lomas Reyes Ing.
  • 20. Universidad politécnica estatal del Carchi Módulo Algebra Página 20 TELEFONO: 0986054587 062-932310 e-mail: oscar.lomas@upec.edu.ec oscarlomasreyes@yahoo.es CRÉDITOS T 1 CRÉDITOS P 2 TOTAL CRÉDITOS 3 HORAS T 16 HORAS P 32 TOTAL HORAS 48 PRE-REQUISITOS: (Módulos obligatorios que DEBEN estar aprobados antes de éste módulo) CÓDIGOS 1. Nivelación Aprobada CO-REQUISITOS: (Módulos obligatorios que TIENEN que aprobar en paralelo a éste módulo) CÓDIGOS 1. Física Aplicada 1 EJE DE FORMACIÓN: (En la malla ubicado en un eje con un nombre) PROFESIONAL ÁREA DE FORMACIÓN: (En la malla agrupado con un color y un nombre) Agrícola LIBRO(S) BASE DEL MÓDULO: (Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio ) Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México LIBRO(S) REFERENCIAL/COMPLEMENTARIO DEL MÓDULO: (Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia
  • 21. Universidad politécnica estatal del Carchi Módulo Algebra Página 21  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.  Sánchez A. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm. Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf DESCRIPCIÓN DEL MÓDULO: (Describe el aporte del módulo a la formación del perfil profesional, a la MISIÓN y VISIÓN de la ESCUELA y, a los logros de aprendizaje de éste módulo). 100 palabras / 7 líneas El módulo de Algebra, permite al estudiante identificar las posibilidades de resolución de problemáticas del entorno a través del conocimiento matemático, haciendo énfasis en estudio de casos, datos estadísticos, análisis de datos, las matemáticas relacionadas a los finanzas, la economía, al campo empresarial de manera preferencial al campo agropecuario; donde se genere proyectos productivos y así fortalecer el aprendizaje académico pedagógico de los educandos. III. RUTA FORMATIVA DEL PERFIL Nodo Problematizado: (Elija uno de la propuesta GENÉRICA de la UPEC o GLOBAL de la ESCUELA). Escaso razonamiento lógico matemático Competencia GENÉRICA - UPEC: (Elija una que guarde coherencia con el NODO PROBLEMATIZADO) Desarrollar el pensamiento lógico Competencia GLOBAL - ESCUELA: (Elija una que guarde coherencia con el NODO PROBLEMATIZADO y las COMPETENCIAS GENÉRICA) Planificar, implementar, coordinar, supervisar y evaluar proyectos y servicios del sector rural
  • 22. Universidad politécnica estatal del Carchi Módulo Algebra Página 22 Competencia ESPECÍFICA - MÓDULO: (Escriba una que guarde coherencia con el NODO PROBLÉMICO y las COMPETENCIAS GENÉRICA y GLOBAL) Desarrollar el pensamiento lógico adecuadamente a través del lenguaje y las estructuras matemáticas para plantear y resolver problemas del entorno. NIVELES DE LOGRO PROCESO COGNITIVO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) Seleccione de los sugeridos por la Escuela para perfil de Ingenierías El estudiante es capaz de: DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) 1. TEÓRICO BÁSICO RECORDAR MLP Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL.- Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. TEÓRICO AVANZADO ENTENDER Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 3. PRÁCTICO BÁSICO APLICAR Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. PRÁCTICO AVANZADO ANALIZAR Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 5. TEÓRICO PRÁCTICO BÁSICO EVALUAR Argumentar el planteamiento que dará solución a los problemas planteados. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y
  • 23. Universidad politécnica estatal del Carchi Módulo Algebra Página 23 métodos. 6. TEÓRICO PRÁCTICO AVANZADO CREAR Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 1. FACTUAL.- Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. 3. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. METACOGNITIVO.- Si el estudiante llega a adquirir EL CONOCIMIENTO DE LA COGNICIÓN GENERAL, así como la sensibilización y el conocimiento del propio conocimiento. Trabajo interdisciplinar: (Saberes integrados de los módulos recibidos y recibiendo que tributan directamente a la formación de la COMPETENCIA ESPECÍFICA). Algebra, calculo, estadística descriptiva, estadística inferencial, investigación de operaciones, matemáticas discretas.
  • 24. Universidad politécnica estatal del Carchi Módulo Algebra Página 24 IV. METODOLOGÍA DE FORMACIÓN DEL PERFIL: LOGROS DE AP RE NDI ZAJ E (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) El estudiante será capaz de CONTENIDOS DE APRENDIZAJE PARA QUE EL ESTUDIANTE ALCANCE LOS LOGROS ESPERADOS ESTRATEGIAS DIDÁCTICAS Estrategias, métodos y técnicas HORAS CLASE COGNITIVOS ¿Qué TIENE que saber? PROCEDIMENTALES ¿Saber cómo TIENE que aplicar el conocimiento? AFECTIVO MOTIVACIONALES ¿Saber qué y cómo TIENE actuar axiológicamente? T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Sistema de Números Reales Recta de números Reales Operaciones Binarias Potenciación y Utilizar organizadores gráficos para identificar las clases de números reales que existe Utilizar organizadores gráficos para ubicar los elementos Relacionar en la uve heurística Identificar los diferentes propiedades en potenciación y radicación Demostrar comprensión sobre los tipos de números reales Disposición para trabajar en equipo Utilizar una actitud reflexiva y critica sobre la importancia de la matemática básica Aceptar opiniones diferentes Potenciar el clima positivo DEMOSTRAR. 1. Caracterizar los números reales para la demostración 2. Seleccionar los argumentos y hechos que corroboraron los números reales. CONVERSACIÓN HEURISTICA 1. Determinación del 2 4
  • 25. Universidad politécnica estatal del Carchi Módulo Algebra Página 25 Radicación Propiedades fundamentales Aplicaciones Hacer síntesis gráfica Repasar los conocimientos adquiridos y aplicarlos a la vida del profesional Turístico Aceptar errores y elevar el autoestima para que pueda actuar de manera autónoma y eficiente problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, socializar la solución. Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Expresiones algebraicas: nomenclatura y clasificación. Polinomios clasificación. Operaciones con Polinomios: adición, resta, multiplicación y división. Productos notables. Descomposición Factorial Aplicar operaciones mentales Identificar los diferentes tipos polinomios Aplicar operaciones mentales en la resolución de un sistema de ecuaciones. Identificar los diferentes tipos de productos notables Resolver ejercicios Aceptar opiniones divergentes Destacar la solidaridad en los ambientes de trabajo Potenciar la resolución de problemas Valorar las participaciones de los demás Demostrar grado por lo que hacemos INDUCTIVO- DEDUCTIVO INDUCTIVO 1.Observación 2. Experimentación. 3. Información (oral, escrita, gráfica, etc.) 4. Dramatización. 5. Resolución de problemas. 6. comprobación. 7. Asociación (especial temporal y casual) 8. Abstracción. 9. Generalización. 2 4
  • 26. Universidad politécnica estatal del Carchi Módulo Algebra Página 26 10. Resúmenes. 11. Ejercicios de fijación. CONVERSACIÓN HEURISTICA 1. Determinación del problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, socializar la solución. Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Máximo común divisor de polinomios. Mínimo común múltiplos de polinomios. Operaciones con fracciones. Aplicaciones Resolver ejercicios con polinomios sencillos y complejos Aplicar procesos de resolución adecuados para resolver problemas. Resolver ejercicios aplicando en forma conjunta los máximos y los mínimos Distinguir los componentes de las expresiones racionales Utilizar una actitud crítica y reflexiva sobre el tema. Cooperar en el desarrollo del conocimiento. Demostrar confianza en el desarrollo del proceso. Cooperar con el grupo en la resolución de funciones. RAZONAR 1. Determinar las premisas. 2. Encontrar la relación de inferencia entre las premisas a través del término medio. 3. Elaborar las conclusiones. RELACIONAR. 1. Analizar de manera independiente los objetos a relacionar. 2. Determinar los criterios de relación entre los objetos 3 6
  • 27. Universidad politécnica estatal del Carchi Módulo Algebra Página 27 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Ecuaciones lineales, resolución Sistemas lineales y clasificación. Resolución de ecuaciones lineales. Aplicaciones Plantear ecuaciones lineales. Identificar los sistemas líneas y su clasificación Elaborar modelos matemáticos en la solución de problemas de la carrera Implementar procesos de resolución adecuados en problemas reales. Trabajar con eficiencia y eficacia respetando los criterios en la resolución de problemas. Demostrar interés en el trabajo individual y de equipo Respetar las opiniones del grupo y fuera de él. Expresar coherencia en las soluciones propuestas valorando las iniciativas de cada participante. EXPOSICION PROBLEMICA. 1. Determinar el problema. 2. Realizar el encuadre del problema. 3. Comunicar el conocimiento. 4. Formulación de la hipótesis. 5. Determinar los procedimientos para resolver problemas. 6. Encontrar solución (fuentes, argumentos, búsqueda, contradicciones) 3 6 Argumentar el planteamiento que dará solución a los problemas planteados. Definición y clasificación. Ecuaciones reducibles a cuadráticas Resolución de ecuaciones cuadráticas por factoreo. Resolución por completación de un trinomio cuadrado. Nombrar la definición de ecuaciones cuadráticas Reducir a expresiones sencillas las expresiones cuadráticas Resolver ejercicios sobre expresiones cuadráticas Ejercitar las operaciones con polinomios incompletos. Utilizar creatividad y capacidad de análisis y síntesis respetando los criterios del grupo. Demostrar razonamiento crítico y reflexivo cooperando en la obtención de resultados EXPOSICIÓN PROBLEMICA 1. Determinar el problema 2. Realizar el encuadre del problema 3. Comunicar el conocimiento (conferencia ,video ) 4. Formulación de la hipótesis ( interacción de las partes) 3 6 Construir expresiones algebraicas que contribuyan Fórmula general para resolver ecuaciones Aplicar la fórmula general para la resolución de ecuaciones Valorar la creatividad de los demás 1. Determinar los procedimientos para 3 6
  • 28. Universidad politécnica estatal del Carchi Módulo Algebra Página 28 a la solución de problemas del entorno. cuadráticas. Aplicaciones de la ecuación cuadrática. cuadráticas Distinguir los componentes de las expresiones racionales Respetar el criterio del grupo. resolver problemas. 2. Encontrar la solución ( fuentes ,argumentos, búsqueda ,contradicciones) V. PLANEACIÓN DE LA EVALUACIÓN DEL MÓDULO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) FORMAS DE EVALUACIÓN DE LOGROS DE APRENDIZAJE indicar las políticas de evaluación para éste módulo según los resultados esperados DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) INDICADORES DE LOGRO DE INGENIERIA Descripción TÉCNICAS e INSTRUMENTOS de EVALUACIÓN 1° PARCI AL 2° PARCI AL 3° PARCI AL SUPLETO RIO Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL. Interpretar información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10%
  • 29. Universidad politécnica estatal del Carchi Módulo Algebra Página 29 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL. Interpretar la información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. CONCEPTUAL. Modelar, simular sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% 100% Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% 100% Argumentar el planteamiento que dará solución a los problemas CONCEPTUAL Desarrollar una estrategia Deberes Documento 5%
  • 30. Universidad politécnica estatal del Carchi Módulo Algebra Página 30 planteados. para el diseño. Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 25% 5% Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. FACTUAL. CONCEPTUAL. PROCESAL METACOGNITIVO Interpretar información. Modelar, simular sistemas complejos. Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 5% 25% 5% 100% VI. GUÍA DE TRABAJO AUTÓNOMO / PRODUCTOS / TIEMPOS ESCALA DE VALORACIÓN Nivel ponderado de aspiración y alcance 9.0 a 10.0 Acreditable - Muy Satisfactorio 7.0 a 7.9 Acreditable – Aceptable 8.0 a 8.9 Acreditable – Satisfactorio 4.0 a 6.9 No Acreditable – Inaceptable
  • 31. Universidad politécnica estatal del Carchi Módulo Algebra Página 31 LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) APRENDIZAJE CENTRADO EN EL ESTUDIANTE HORAS AUTÓNO MAS INSTRUCCIONES RECURSOS PRODUCTO T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Consulte información en el internet y textos especializados los conceptos de números reales, presentar en organizadores gráficos. Prueba Libros. Copias Documentos en pdf. Descarga de documentos de la web. Diferencia los diferentes tipos de sistemas de números reales. 2 4 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Consulta sobre la definición de un monomio y polinomio. Grado de un polinomio y su ordenamiento Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identifica los tipos de polinomios 2 4 Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Distinguir plenamente entre expresiones racionales e irracionales Libros. Copias Documentos en pdf. Descarga de documentos de la web. Distinguir plenamente entre expresiones racionales e irracionales 3 6
  • 32. Universidad politécnica estatal del Carchi Módulo Algebra Página 32 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Dar solución a ecuaciones de primer grado Libros. Copias Documentos en pdf. Descarga de documentos de la web. Dar solución a ecuaciones de primer grado 3 6 Argumentar el planteamiento que dará solución a los problemas planteados. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas. Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas 3 6 Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 3 6 PROYECTO INTEGRADOR DE SABERES: (Proyecto Integrador de conocimientos con los módulos del Nivel ) TOTAL 16 32 CRÉDITOS 1 2 3
  • 33. Universidad politécnica estatal del Carchi Módulo Algebra Página 33 VII. Bibliografía. BÁSICA: (Disponible en la UPEC en físico y digital – REFENCIAR con normas APA)  Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México COMPLEMENTARIA: (NO Disponible en la UPEC en físico y digital - REFENCIAR con normas APA)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.  Sánchez A. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm. Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf
  • 34. Universidad politécnica estatal del Carchi Módulo Algebra Página 34
  • 35. Universidad politécnica estatal del Carchi Módulo Algebra Página 35
  • 36. Universidad politécnica estatal del Carchi Módulo Algebra Página 36
  • 37. Universidad politécnica estatal del Carchi Módulo Algebra Página 37
  • 38. Universidad politécnica estatal del Carchi Módulo Algebra Página 38
  • 39. Universidad politécnica estatal del Carchi Módulo Algebra Página 39
  • 40. Universidad politécnica estatal del Carchi Módulo Algebra Página 40
  • 41. Universidad politécnica estatal del Carchi Módulo Algebra Página 41
  • 42. Universidad politécnica estatal del Carchi Módulo Algebra Página 42
  • 43. Universidad politécnica estatal del Carchi Módulo Algebra Página 43
  • 44. Universidad politécnica estatal del Carchi Módulo Algebra Página 44
  • 45. Universidad politécnica estatal del Carchi Módulo Algebra Página 45
  • 46. Universidad politécnica estatal del Carchi Módulo Algebra Página 46
  • 47. Universidad politécnica estatal del Carchi Módulo Algebra Página 47 N- NOMBRE S SEX O EDA D FECHA DE COMPRA FECHA ACTUAL BIENES COMPRADO S COSTO DEL BIEN VALOR RESIDUA L VALOR RECIDUA L 0 DEPECIACO N CON V.R DEPECIACO N SIN V.R VAOLOR POR DEPRECIA R CON V.R VAOLOR POR DEPRECIA R CON V.R2 1 dayana F 20/03/199 8 29/07/201 3 EDIFICIO 100000,0 0 10000 0 5855,61 6506,24 94144,39 93493,76 2 salma F 22 01/01/201 0 29/07/201 3 VEHICULO 25000,00 2500 0 6293,10 6992,34 18706,90 18007,66 3 cinthia F 18 30/07/200 9 29/07/201 3 MUEBLES 10000,00 1000 0 2250,00 2500,00 7750,00 7500,00 4 brayam M 19 11/12/201 1 29/07/201 3 EQIPOS DE COMPUTO 2000,00 200 0 1102,35 1224,83 897,65 775,17 5 migel M 19 15/04/201 2 29/07/201 3 EQIPOS DE COMPUTO 1500,00 150 0 1048,40 1164,89 451,60 335,11 6 adriana F 19 18/10/200 5 29/07/201 3 MAQUINARI A 18000,00 1800 0 2081,31 2312,57 15918,69 15687,43 7 geovany M 19 01/01/199 6 29/07/201 3 EDIFICIO 70000,00 7000 0 3582,33 3980,37 66417,67 66019,63 8 jhonatan M 18 29/07/200 0 29/07/201 3 EDIFICIO 85000,00 8500 0 5880,90 6534,33 79119,10 78465,67 9 cristina F 20 01/01/201 0 29/07/201 3 VEHICULO 32000,00 3200 0 8055,17 8950,19 23944,83 23049,81 1 0 diana F 18 10/09/200 4 29/07/201 3 MAQUINARI A 21000,00 2100 0 2126,54 2362,82 18873,46 18637,18 1 1 karen F 20 28/11/200 0 29/07/201 3 EDIFICIO 95000,00 9500 0 6746,11 7495,68 88253,89 87504,32 TABLA DE AMORTIZACION
  • 48. Universidad politécnica estatal del Carchi Módulo Algebra Página 48 1 2 patricia F 18 01/01/201 2 29/07/201 3 EQIPOS DE COMPUTO 1800,00 180 0 1028,35 1142,61 771,65 657,39 1 3 kepler M 21 14/02/201 0 29/07/201 3 VEHICULO 28000,00 2800 0 7294,21 8104,68 20705,79 19895,32 1 4 erick M 21 01/01/201 2 29/07/201 3 EQIPOS DE COMPUTO 2500,00 250 0 1428,26 1586,96 1071,74 913,04 1 5 jacob M 20 30/03/201 1 29/07/201 3 EDIFICIO 120000,0 0 12000 0 46267,61 51408,45 73732,39 68591,55 1 6 oscar M 21 01/01/199 4 29/07/201 3 EDIFICIO 80000,00 8000 0 3676,04 4084,49 76323,96 75915,51 1 7 diana F 21 17/08/200 9 29/07/201 3 VEHICULO 25000,00 2500 0 5695,21 6328,02 19304,79 18671,98 1 8 diego M 23 23/12/201 1 29/07/201 3 EQIPOS DE COMPUTO 1900,00 190 0 1068,75 1187,50 831,25 712,50 1 9 tania F 20 12/05/201 2 29/07/201 3 MAQUINARI A 17500,00 1750 0 12976,86 14418,74 4523,14 3081,26 2 0 lennin M 24 01/01/201 1 29/07/201 3 MUEBLES 9800,00 980 0 3424,79 3805,32 6375,21 5994,68
  • 49. Universidad politécnica estatal del Carchi Módulo Algebra Página 49 PRIMERO: B Año de compra Tipo costo Valor de rescate Porcentaje de depresión Depreciación sin rescate Depresiación con rescate # de años trascurridos hasta el 2013 1/2 año Depreción sin rescate Depresión con rescate Saldo por depreciar sin rescate Saldo por depreciar con rescate 2012 TOYOTA 20.000 2000 20% 4000 3600 1,5 6000 5400 14.000 12.600 2011 NIZZAN 15.000 2000 20% 3000 2600 2,5 7500 6500 7.500 6.500 2010 MAZDA 30.000 2000 20% 6000 5600 3,5 21000 19600 9.000 8.400 2013 CHEVROLET 40.000 2000 20% 8000 7600 0,5 4000 3800 36.000 34.200 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI DESARROLLO INTEGRAL AGROPECUARIO TANIA LORENA YEPEZ FECHA:18-06-2013
  • 50. Universidad politécnica estatal del Carchi Módulo Algebra Página 50
  • 51. Universidad politécnica estatal del Carchi Módulo Algebra Página 51
  • 52. Universidad politécnica estatal del Carchi Módulo Algebra Página 52
  • 53. Universidad politécnica estatal del Carchi Módulo Algebra Página 53
  • 54. Universidad politécnica estatal del Carchi Módulo Algebra Página 54
  • 55. Universidad politécnica estatal del Carchi Módulo Algebra Página 55
  • 56. Universidad politécnica estatal del Carchi Módulo Algebra Página 56
  • 57. Universidad politécnica estatal del Carchi Módulo Algebra Página 57
  • 58. Universidad politécnica estatal del Carchi Módulo Algebra Página 58 PRIMERO: B Año de compra EQUIPOS costo Valor de rescate Porcentaje de depresión Depreciación sin rescate Depresiación con rescate # de años trascurridos hasta el 2013 Depreción sin rescate Depresión con rescate Saldo por depreciar sin rescate Saldo por depreciar con rescate 2011 EDIFICIO 50.000 5000 20% 10000 9000 3 30000 27000 20.000 25.000 2010 MOTO NIVELADORA 80.000 8000 20% 16000 14400 4 64000 57600 16.000 56.000 2011 VEHICULO(AEROVAN) 15.000 1500 20% 3000 2700 2 6000 5400 9.000 4.500 2013 CASA 20.000 2000 20% 4000 3600 1 4000 3600 16.000 2.000 2013 EQUIPOS DE COMPUTACION 7.000 700 33% 2310 2079 1 2310 2079 4.690 1.610 2011 VEHICULO(MONTA CARGA) 15.000 1500 20% 3000 2700 2 6000 5400 9.000 4.500 2012 CUARTO FRIO 60.000 6000 20% 12000 10800 2 24000 21600 36.000 18.000 2010 MUEBLES Y ENSERES 28.000 2800 10% 2800 2520 3 8400 7560 19.600 5.600 2012 RETROESCABADORA 90.000 9000 20% 18000 16200 2 36000 32400 54.000 27.000 2013 VEHICULO(TRAILER) 150.000 15000 20% 30000 27000 1 30000 27000 120.000 15.000 DESARROLLO INTEGRAL AGROPECUARIO UNIVERSIDADA POLITECNICA ESTATL DEL CARCHI TANIA LORENA YEPEZ FECHA: 18-06-2013
  • 59. Universidad politécnica estatal del Carchi Módulo Algebra Página 59
  • 60. Universidad politécnica estatal del Carchi Módulo Algebra Página 60
  • 61. Universidad politécnica estatal del Carchi Módulo Algebra Página 61
  • 62. Universidad politécnica estatal del Carchi Módulo Algebra Página 62
  • 63. Universidad politécnica estatal del Carchi Módulo Algebra Página 63 UNIVERSIDADA D POLITECNICA ESTATAL DEL CARCHI DESARROLLO INTEGRAL AGROPE CUARIO ALGEBRA TANIA LORENA YEPEZ BOLAÑOS. EXPRESIONES ALGEBRAICAS Fracción algebraica Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Simplificar fracciones algebraicas Simplifica:
  • 64. Universidad politécnica estatal del Carchi Módulo Algebra Página 64 Suma y resta de fracciones algebraicas Para sumar y restar procederemos de forma similar que con fracciones de números enteros, reduciendo primero a común denominador. Suma y resta de fracciones algebraicas Opera: El m.c.m. de los denominadores es Sumamos los numeradores dejando el mismo denominador y simplificamos el numerador: Producto de fracciones algebraicas
  • 65. Universidad politécnica estatal del Carchi Módulo Algebra Página 65 Para multiplicar fracciones algebraicas procederemos igual que con fracciones, multiplicando los numeradores y los denominadores, aunque antes de multiplicar debemos simplificar, si se puede. Ejemplos: Producto de fracciones algebraicas Opera: Multiplicamos numeradores y denominadores, pero lo dejamos indicado: Simplificamos antes de efectuar el producto: Finalmente, podemos multiplicar, si es preciso: Cociente de fracciones algebraicas Para dividir fracciones algebraicas procederemos igual que con fracciones, haciendo el producto cruzado de numeradores y denominadores, aunque antes de multiplicar debemos simplificar, si se puede.
  • 66. Universidad politécnica estatal del Carchi Módulo Algebra Página 66 Cociente de fracciones algebraicas Opera: Hacemos el producto cruzado, dejándolo indicado: Simplificamos: Finalmente, podemos multiplicar, si es preciso:
  • 67. Universidad politécnica estatal del Carchi Módulo Algebra Página 67 EJERCICIOS 1. SUMA LAS FRACCIONES ALGEBRAICAS:
  • 68. Universidad politécnica estatal del Carchi Módulo Algebra Página 68 RESTA DE FRACCIONES ALGEBRAICAS
  • 69. Universidad politécnica estatal del Carchi Módulo Algebra Página 69 2. MULTIPLICA LAS FRACCIONES ALGEBRAICAS: 3. DIVIDE LAS FRACCIONES ALGEBRAICAS:
  • 70. Universidad politécnica estatal del Carchi Módulo Algebra Página 70 UNIVERSIDAD POLITECNICA ESTATAL DEL CARCHI DESARROLLO INTEGRAL AGROPECUARIO ALGEBRA TANIA LORENA YEPEZ LAS ECUACIONES LINEALES O DE PRIMER GRADO: Son del tipo ax + b = 0 , con a ≠ 0, ó cualquier otra ecuación en la que al operar, trasponer términos y simplificar adopten esa expresión. Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. 2º Quitar denominadores. 3º Agrupar los términos en x en un miembro y los términos independientes en el otro. 4º Reducir los términos semejantes 5º Despejar la incógnita.
  • 71. Universidad politécnica estatal del Carchi Módulo Algebra Página 71 EJEMPLOS DE ECUACIONES LINEALES Despejamos la incógnita: SISTEMAS DE ECUACIONES LINEALES - MÉTODO GRÁFICO: Para aplicar el método gráfico se realizan los siguientes pasos: 1. Se despeja la incógnita (y) en ambas ecuaciones. 2. Se construye para cada una de las ecuaciones la tabla de valores correspondientes. 3. Se representan gráficamente ambas rectas en los ejes coordenados. 4. Se hallan los puntos de intercepción. Puede suceder los siguientes casos: i) Las rectas se intersectan en un punto, cuyas coordenadas (a, b) es la solución del sistema (figura 1). ii) Las dos rectas coinciden, dando origen a infinitas soluciones (figura 2).
  • 72. Universidad politécnica estatal del Carchi Módulo Algebra Página 72 iii) Las dos rectas son paralelas (no se intersectan), por lo tanto no hay solución (figura 3).
  • 73. Universidad politécnica estatal del Carchi Módulo Algebra Página 73 UNIVERSIDADA D POLITECNICA ESTATAL DEL CARCHI DESARROLLO INTEGRAL AGROPE CUARIO ALGEBRA ECUACIONES CUADRATICAS TANIA LORENA YEPEZ REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN CUADRÁTICA Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática, obtendríamos siempre una curva llamada parábola.
  • 74. Universidad politécnica estatal del Carchi Módulo Algebra Página 74 Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática. Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan. Estas características o elementos son: Orientación o concavidad (ramas o brazos) Puntos de corte con el eje de abscisas (raíces) Punto de corte con el eje de ordenadas Eje de simetría Vértice Orientación o concavidad Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo. Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax2 ): Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x2 − 3x − 5 Parábola del puente, una función cuadrática.
  • 75. Universidad politécnica estatal del Carchi Módulo Algebra Página 75 Si a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x2 + 2x + 3
  • 76. Universidad politécnica estatal del Carchi Módulo Algebra Página 76 Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.
  • 77. Universidad politécnica estatal del Carchi Módulo Algebra Página 77
  • 78. Universidad politécnica estatal del Carchi Módulo Algebra Página 78

Related Documents