Polymer based transistors & microfluidic devices for biosensor applications<br />Senaka Krishna Kanakamedala<br />Advisor ...
Introduction : Organic Electro Chemical Transistors (OECT) <br /><ul><li> OECT : Low operating voltages , Aqueous environm...
 Electrode materials : Gold, silver and platinum
 Channel: Conducting polymers
Electrolyte solution for electrochemical reactions</li></ul>Gate (G)<br />Electrolyte<br />Source (S)<br />Drain (D)<br />...
OECT with Optimized Dimensions<br />3<br /><ul><li> Electrode & Channel material: PEDOT:PSS (conducting polymer)</li></ul...
OECT on Glass (left) & Polyester sheet (right)<br />4<br />Fabricated Transistors<br />
Film Thickness = 200 nm<br />5<br />Surface roughness of the patterned film<br />Fig: AFM image of the PEDOT:PSS film<br />
Transistors Characteristics<br />6<br />Vds = Drain voltage, Ids = Drain current, and Vgs = Gate voltage<br />
Glucose Sensor Response<br />―<br />Normalized Response<br />I0 - IC<br />=<br />I0<br /><ul><li> I0 = Drain current befor...
 IC = Drain current after adding glucose (concentration of interest) </li></ul>7<br />
Micromolar Glutamate Sensing<br />8<br />
of 12

polymer transistors and microfluidic devices for biosensor applications

Published on: Mar 4, 2016
Published in: Education      Technology      Business      
Source: www.slideshare.net


Transcripts - polymer transistors and microfluidic devices for biosensor applications

  • 1. Polymer based transistors & microfluidic devices for biosensor applications<br />Senaka Krishna Kanakamedala<br />Advisor : Dr. Mark A DeCoster<br />1<br />Louisiana Tech University, Ruston, LA, USA<br />
  • 2. Introduction : Organic Electro Chemical Transistors (OECT) <br /><ul><li> OECT : Low operating voltages , Aqueous environments & Simplified structure
  • 3. Electrode materials : Gold, silver and platinum
  • 4. Channel: Conducting polymers
  • 5. Electrolyte solution for electrochemical reactions</li></ul>Gate (G)<br />Electrolyte<br />Source (S)<br />Drain (D)<br />Polymer channel<br />2<br />
  • 6. OECT with Optimized Dimensions<br />3<br /><ul><li> Electrode & Channel material: PEDOT:PSS (conducting polymer)</li></ul>Fig: Schematic diagram of the OECT (top view)<br />
  • 7. OECT on Glass (left) & Polyester sheet (right)<br />4<br />Fabricated Transistors<br />
  • 8. Film Thickness = 200 nm<br />5<br />Surface roughness of the patterned film<br />Fig: AFM image of the PEDOT:PSS film<br />
  • 9. Transistors Characteristics<br />6<br />Vds = Drain voltage, Ids = Drain current, and Vgs = Gate voltage<br />
  • 10. Glucose Sensor Response<br />―<br />Normalized Response<br />I0 - IC<br />=<br />I0<br /><ul><li> I0 = Drain current before adding glucose
  • 11. IC = Drain current after adding glucose (concentration of interest) </li></ul>7<br />
  • 12. Micromolar Glutamate Sensing<br />8<br />
  • 13. Glutamate Release from Tumor Cells<br />9<br />
  • 14. Developed Field Effect Transistors<br />10<br /><ul><li> Two sensor devices on a single chip
  • 15. Gold electrodes are separated by a narrow channel
  • 16. Channel length = 50µm</li></ul>4.5 mm<br />4.6 mm<br />
  • 17. 11<br />Outlet<br />Inlet 1<br />Inlet 2<br />Flexible disposable micromixer<br />Fig: Solid works model of the polymer micromixer (left), three layered polymer patterns constitute microchannel of the micromixer (right)<br />
  • 18. Fabricated flexible microfluidic devices<br />12<br />