Welcome to the CD-ROM edition of
the Pressure Vessel Handbook.
Click on the arrow buttons on the tool bar above to page
t...
WARNING!
This document is copyright 1997 by Pressure Vessels Inc., and
may not be reproduced, stored in a retrieval system...
P
V
H
T
E e d
n
i
withforeword by
P
B
Professor of Chemical Engineering
University of Tulsa
Tulsa, Oklahoma
E
M
...
FOREWORD
Engineers who design equipment for the chemical process industry
are sooner or later confronted with the design ...
PREFACE
This reference book is prepared for the purpose of making formulas,
technicaldata, designand construction methods ...
9
CONTENTS
PART I
Design and Construction of Pressure Vessels .................................... 11
PART II
Geometry...
PART L
DESIGN AND CONSTRUCTION
OF PRESSURE VESSEL
1. VesselsUnderinternalPressure_~__~~_~~~~~~~..~
.~~~~ti~ti~~~~. 15
St...
13. Rectangular Tanks ................................................................................ 212
14. Corrosion ....
S
P
V
Pressure vessels are subject to various loadings, which exert stresses of
different intensities in the vessel com...
/
,
STRESSES IN CYLINDRICAL SHELL
Uniforminternalorexternalpressureinducesinthelongitudinal eamtwotimeslargerunit
s
str...
I
P
N
R
1. OPERATING PRESSURE
The pressure which is required for the process, served by the vessel, at which
the vesse...
I t
c
pressurehshall be: s ,
si e
en s
t h at
e
t
1
StressValueS
Temperature
)( M A . W.Press. x o
a
l
l
x 5
w.
.
S...
I
P
N
R
FORMULAS IN TERMS OF INSJDEDIMENSIONS
NOTATION
P = D
p
e
o p
vt
w
S= S
E = J
e o f ip i c 1i e a n c t y 7 ...
E
D
ED
P =
S= 1
5
E = 0
j
s
S
AI
G
T
X
NA
p d
p
e
r s
p 7s
vt5 o
1
p
@6
5 l
.
e . f f oi s cp
8
o s
o
i h n
a h
h
e...
I
P
N
FORMULAS IN TERMS OF INSIDE DIMENS1ONS
D = I
NOTATION
P = D
w
S= .
E = J
R = I
d i s ai m n e d tc e e hr , e
...
21
E
X
DESIGN DATA:
P = lOOpsi esign
d
pressure
S = 17500
psistressvalueof
SA515-70
plate@650°F
E = 0.85,efficiency
ofs...
22
I
P
N
FORMULAS IN TERMS OF OUTSIDE DIMENSIONS
NOTATION
P=D
p
e
op
vt
w
S= S
1
7
E = Joint efficiency,page 1
r s ...
23
E
X
DESIGN DATA:
P = IOOpsidesignpressure
S = 17500
psistressva1ueof
SA515-70plate@650°F
E= O.8&efliciencyofspot-exa...
I
P
N
FORMULAS TERMSOF OUTSIDEDIMENSIONS
IN
N
~
A
T
I
O
N
Outsidediameter.inches
~ = one half of the included(ap...
25
E
X
3ESIGN DATA:
P = IOOpsi
designpressure
S = 17500
psistressvalueof
SA 515-70
plate@650°F
E = 0.85,efficiencyfspot...
&u
Y
I
E
P
F
NOTATION
E=joint efficiency
P = Internal or external design pressure psi
d =Inside diameter ofshell, in....
27
I
E
P
E
DESIGNDATA
P = 300 psi design pressure
E=joint
d =24in. inside diameter ofshell
efficiency
s
=15,0001psi...
28
PRESSURE – TEMPERATURE RATINGS
F
S
T O FLANGES AND FLANGED FITTINGS
P
E I
E R P L
E
American National Standard ANSI ...
2
-
P
F
STATIC HEAD
The fluid in the vessel exerts pressure on the vessel wall. The intensity of the
pressure when the ...
30
T
f
q
c u o om i po r cr e i r qs k o t n h
a
p
u li
ir aace weight forevarioussmaterialsdand
fk d t n
ne s
at dif...
31
E
D
V
w
r
e
e
e
P
rs
P
e is
g
s
un r
X
e
e i sn s f es n e u d s o ee n dx i w c ero er r r n k o si1 l s n o...
32
PRESSURE
X
E
FORMULAS
N
O
T
A
T
I
O
N
P=
P =
d.=
L =
External design pressure, psig.
Maxunumallowableworkin...
33
E
E DATA
S
D
I
G
X
N
P = IS
e
x dt
e e r sn
pressure
a
i
l g
n
D. = 96 in. outside diatmeter of the shell
f
e
ths...
34
EXTERNAL PRESSURE
FORMULAS
NOTATION
= External design pressure psig.
P
Pa = Maximum allowable working pressure psig.
D...
35
E
X
DESIGN DATA:
P = 15psigexternal design pressure
Do= 96 inches outside diameter of head
Material of the head SA-2...
36
E
P
X
FORMULAS
CONICAL SE(XION D
N
CONE A
WHEN a IS EQUAL
TOORLESSTHAN60<
and Dlr, > 10
a ax l i l pm r w e am b ...
37
E
X
DESIGN DATA
F’ = 15 psi external design pressure
Material of the cone SA 285-C plate
500 F design temperature
CO...
39
E
P
X
FORMULAS
7
L
J
o
T
R
L
Use L in calculation as shown when
the strength of joints of cone to cylinder doe...
40
E
P
DESIGN OF STIFFENING
X
RINGS
NOTATION
A : Factor determined from the chart (page 42) for the material used in ...
41
E
E DATA:
S
D
P=
D.=
1
9
L
H
M
T
E= M
o
1 = 0
p
I
G
X
N
,e
xs dt
e ei r r s5 e . a s g u rn e .
p
n
s
i
l
i o...
4
2
owl
Cacml
.
001
0
1
S
A
S
L
A
THE VALUES OF FACTOR
U
I
F
S
O
REM
F
U DL E ANU S
V
O
S
A
S N E X R T ...
e Uolwj
-
I
I
I
I
n
r
I I I
i
z
I
I 1 I
I
w
II
111111
I
# ,
I
l
w
8
Pa
E
45
46
..
t
t
1
I 1
I 1
I I
I I
1 I
1
1
I
1
,
,,
,
I
I
e Ho13vd
.
Y-RI]
I
,
I
I
I I ! 1 I I
I
I I
I
...
4
48
E
P
CONSTRUCTION
X
OF STIFFENING RINGS
LOCATION
Stiffening rings may be placed on the inside or outside of a vess...
49
CHARTS FOR DETERMINING THE WALL THICKNESS FOR
VESSELS SUBJECTED T
U
T
C
~“
F
V
t s c
ih t a n r r dgt i i ae a f, ...
50
CHARTS FOR DETERMINING THE WALL THICKNESS FOR
VESSELS SUBJECTED TO FULL VACUUM
323.
525.
5m.
502
475.
475
a
m
6...
51
CHARTS FOR DETERMINING THE WALL THICKNESS FOR
VESSELS SUBJECTED TO FULL VACUUM
525”
10
Is
,Xl
.25
.32
.sS
.4
.5...
52
D
T
WIND
T
LOAD
The computationof wind load is based on Standard ANSIiASCE7-93, approved 1994.
The basic wind speed...
53
DESIGN OF TALL TOWERS
WIND
LOAD
(Continue~
COEFFICIENT G (Gust r
Abo?eE~~~~d, l.
i
0-15
20
40
60
80
100
140
200
300
50...
W
MAP
S
(miles per hour)
.
r-v
—
(q
90
i
u
j-----
---
i
i
---- =- ~-i_.. _.T‘-.’
“r
i----
m
. .. . .. . ... ...
.
M
W
S
(miles per hour)
NOTES:1 V
2
3
4
5
6
a a f a l s ts u r ap3 e t -a.e m g i e e fr ed o o c p ua to3 t n s ea...
56
D
T
WIND
T
LOAD
l
a i a o l tm e a eb d to a s h s e ASA n e d
n
r n
d tt s a
o
A58.1-1955.This d
d
d
a
rn
Computat...
M
W
P
57
.
58
D
E O S
T
IT
AGO
N L
W
EF
L
R
S
WIND LOAD
~ =
v=
t
N O T A T I O N
W
o ti v
w i ht s e suh f l e fa e t ...
59
D
WEIGHT
E O S
T
OF
IT
THE
AO
G
NWL
EF
L
R
S
VESSEL
The weight of the vessel results compressive stress onl...
60
D
E O S
T
IT
AGO
N L
W
EF
L
R
S
V I B RAT I ON
A a r
e w s t ut i
o
la d ntw vl vei d b r r Tl a s po i poo t ...
61
DESIGN OF TALL TOWERS
S
LOAD (EARTHQUAKE)
The loading condition of a tower under seismic forces is similar to that o...
62
D
E O S
T
IT
A O
G
NWL
EF
L
R
S
SEISMIC LOAD (EARTHQUAKE)
NOTATION
I
= Occupancy importance coefficient (use ...
63
D
E O S
T
IT
AGO
N L
W
EF
SEISMIC LOAD (EARTHQUAKE)
EXAMPLE‘
Given:
Seismiczone: 2B
D = 37.5 in. = 3.125 ft.
z...
64
SEISMIC ZONE MAP OF THE UNITED STATES
66
D
E O S
T
IT
ECCENTRIC
Towersand their i
a
a
l
m
s
f
a
t
o
o
t
w
n
AGO
N L
W
EF
L
R
S
LOAD
e
t
qe u r a n...
67
Design of Tall Towers
ELASTIC
A tower u
1
2
I
t
t
s
e
E
s
i
STABILITY
an
c x d m pi em e f sr i ti l oaw n b
o
r
a s...
68
1
D
E O S
T
IT
AGO
N L
W
EF
L
R
S
D
rowers s
r
m
hb d o e u d i l e n d n
s
t
g
m ele d e i h op tr 100afeet...
69
D
E O S
T
IT
AGO
N L
W
EF
L
R
S
COMBINATION OF STRESSES
T
s
t
ir h n
e
bsd t s up e r c e evh i d o s u cy...
70
C
O S
O
(cont.)
The b
t
T
t
e mn
o d im w e ig d n i e c r ne e a bs di on s toht t
d
t
n
u
t f
t
or
t g
o tm o h...
71
DESIGN OF TALL TOWERS
EXAMPLE - A
Required thicknessof cylindricalshell under internal pressureand wind load.
~,- ~,,
...
I
L
D
E O S
T
IT
AGO
N L
W
EF
L
R
S
EXAMPLE B
R
w
—
e
t q h u i o icc y k l ens de u d sh rc s i oce al fd l ol...
73
EXAMPLE
The preliminary calculation of the required wall thickness shows that at the bottom approximately 0.75 in.
pl...
74
E
B(
Checkingthe stresseswith the preliminarycalculatedplate thicknesses:
Stress in the shellat the bottomhead to sh...
75
EXAMPLE B (CONT.)
Stressin the shellat 40 ft. down from the top of the tower. Platethickness0.25 in.
S
dt
t w
r
e ...
76
DESIGN OF SKIRT SUPPORT
A skirt is the most frequently u
v
s
e I si a s
o t iw
a
ts m
s e a o i ss f sad cf ep v ot p...
77
I
DESIGN OF ANCHOR BOLT
V
s
r
e vr et s s
i
o o k s t t
i
n
ca e t a l o cs n wk f u s a
s
t
a
m ,b
e
rt d s t s ce...
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
Pressure vessel handbook,10 edition
of 499

Pressure vessel handbook,10 edition

Published on: Mar 4, 2016
Published in: Technology      Business      
Source: www.slideshare.net


Transcripts - Pressure vessel handbook,10 edition

  • 1. Welcome to the CD-ROM edition of the Pressure Vessel Handbook. Click on the arrow buttons on the tool bar above to page through the book. Pages which were blank in the print version of the Pressure Vessel Handbook have had substitute pages inserted in order to retain the book's page numbering. To jump to a section from the table of contents, click your mouse on the section title.
  • 2. WARNING! This document is copyright 1997 by Pressure Vessels Inc., and may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, recording or otherwise, without prior written permission. It is intended for single user use. Information about site licenses and network use may be obtained by contacting: Pressure Vessels Incorporated P.O. Box 35365 Tulsa, OK 74153 USA www.pressure-vessel.com
  • 3. P V H T E e d n i withforeword by P B Professor of Chemical Engineering University of Tulsa Tulsa, Oklahoma E M PRESSURE VESSEL PUBLISHING, INC. P.O. Box 35365 “ Tulsa, OK 74153 t t i o h
  • 4. FOREWORD Engineers who design equipment for the chemical process industry are sooner or later confronted with the design of pressure vessels and mounting requirements for them. This is very often a frustrating experience for anyone who has not kept up with current literature in the field of code requirements and design equations. First he must familiarize himself with the latest version of the applicable code. Then he must search the literature for techniques used in design to meet these codes. Finally he must select material properties and dimensional data from various handbooks and company catalogs for use in the design equations. Mr. Megyesy has recognized this problem. For several years he has been accumulating data on code requirements and calculational methods. He has been presenting this information first in the form of his “Calculation Form Sheets” and now has put it all together in one place in the Pressure Vessel Handbook. I believe that this fills a real need in the pressure vessel industry and that readers will find it extremely useful. Paul Buthod
  • 5. PREFACE This reference book is prepared for the purpose of making formulas, technicaldata, designand construction methods readily available for the designer, detailer, Iayoutmen and others dealing with pressure vessels. Practical men in this industry often have difficulty finding the required data and solutions, these being scattered throughout extensive literature or advanced studies. The author’s aim was to bring together all of the above material under one cover and present it in a convenient form. The design procedures and formulas of the ASME Code for Pressure Vessels, Section VIII Division I have been utilized as well as those generally accepted sources which are not covered by this Code. From among the alternative construction methods described by the Code the author has selected those which are most frequently used in practice. In order to provide the greatest serviceability with this Handbook, rarely occurring loadings, special construction methods or materials have been excluded from its scope. Due to the same reason this Handbook deals only with vessels constructed from ferrous material by welding, since the vast majority of the pressure vessels are in this category. A large part of this book was taken from the works of others, with some of the material placed in different arrangement, and some unchanged. The author wishes to acknowledge his indebtedness to Professor S4ndor Kalinszky, J&os Bodor, Lasz16F61egyhiizyand J6zsef Gyorii for their material and valuable suggestions, to the American Society of Mechanical Engineers and to the publishers, who generously permitted the author to include material from their publications. The authorwishesalso to thank all those who helpedto improvethis new edition by their suggestions and corrections. Suggestions and criticism concerning some errors which may remain in spite of all precautions shall be greatly appreciated. They contribute to the further improvement of this Handbook. Eugene F. Megyesy
  • 6. 9 CONTENTS PART I Design and Construction of Pressure Vessels .................................... 11 PART II Geometry and Layout of Pressure Vessels ...................................... 25’7 PART III Measures and Weights .................................................................... 321 PART IV Design of Steel Structures .............................................................. 447 PARTV Miscellaneous ................................................................................. 465
  • 7. PART L DESIGN AND CONSTRUCTION OF PRESSURE VESSEL 1. VesselsUnderinternalPressure_~__~~_~~~~~~~..~ .~~~~ti~ti~~~~. 15 StressesinCylindricalShel~Definitions,Formulas, ressureof P Fluid, Pressure-TemperatureRatings of American Standard ,CarbonSteelPipe Flanges. 2. Vessels Under External Pressure .......................................................... Definitions, Formulas, Minimum Required TicknessofCylindricalSheH,ChafiforDeteminingThicknessofCylindrical and SphericalVesselsunderExternal PressurewhenConstructedof Carbon Steel, 31 3. Design ofTall Towers .......................................................................... Wind Load, Weight of Vessel, Seismic Load, Vibration, Eccentric Load, Elastic Stability, Deflection, Combination of Stresses, Design of Skirt Support, Design of Anchor Bolts (approximate method), Design of Base Ring (approximate method), Design of Anchor Bold and Base Ring, Anchor Bolt Chair for Tall Towers. 52 4. Vessel Suppotis ..................................................................................... Stresses in Large Horizontal Vessels Supported by Two Saddles, Stresses in Vessels on Leg Support, Stresses in Vessels Due to Lug support. 86 5. Openings ............................................................................................... 122 Inspection Openings, Openings without Reinforcing Pad, Opening with Reinforcing Pad, Extension of Openings, Reinforcement of Openings, Strength of Attachments, Joining Openings to Vessels, Length of Couplings and Pipes for Openings. 6. Nozzle Loads ........................................................................................ 153 7. Reinforcement at the Junction of Cone to Cylinder .............................. 159 8. Welding of Pressure Vessels ................................................................. 170 Welded Joints, But Welded Joint of Plates of Unequal Thicknesses, Application of Welding Symbols. 9. Regulations, Specifications ................................................................... 181 Code Rules Related to Various Services, Code Rules Related to Various Plate Thicknesses of Vessel, Tanks and Vessels Containing Flammable and Combustible Liquids, Properties of Materials, Description of Materials, Specification for The Design and Fabrication of Pressure Vessels, Fabrication Tolerances. 10. Materials of Foreign Countries ............................................................. 194 11. Welded Tanks ....................................................................................... 204
  • 8. 13. Rectangular Tanks ................................................................................ 212 14. Corrosion .............................................................................................. 221 t 15. Miscellaneous ... ... .... .. . . . ..~...o..o...u,mv..u.mv..~..u... i..~..~..~..u..~ 232 Fabricating Capacities, Pipe and Tube Bending, Pipe Engagemerit, Drill Sizes for Pipe Taps, Bend Allowances, Lengthof Stud Bolts, Pressure Vessel Detailing, Preferred Locations, CommonErrors,LiRingAttachments, SafeLoadsforRopesand Chains, Transportation ofVessels. 16. Painting Steel Surfaces ..~...o..o...~....a...~. U.V......O... 247 1NREFERENCESTHROUGHOUTTHISBOOK"CODE"sTANDSF0RASME O O MI E EC H AEYNN I GC I F N L E O AR I S ) L C T AB E (AMERICAN S N E R P R E VS S CU S R S E EC DL E S O E V RT II F EO C OI N S O R US C T IR O N U L N E I T O P R E VS ES SD SRF EE 1 — A S A , I M O E NR T I A C N A D NA R D . U I V LI S S N 1 E D
  • 9. S P V Pressure vessels are subject to various loadings, which exert stresses of different intensities in the vessel components. The category and intensity of stresses are the function of the nature of loadings, the geometry and construction of the vessel components. LOADINGS (Code UG-22) a, Internal or external pressure b. Weight of the vessel and contents c. Static reactions from attached equipment, piping, lining, insulation, internals, supports d. Cyclic and dynamic reactions due to pressure or thermal variations e. Wind pressure and seismic forces f. Impact reactions due to fluid shock g“ Temperature gradients and differential thermal expansion STRESSES (Code UG-23) a. Tensile stress b. Longitudinal compressive stress c. General primary membrane stress induced by any combination of loadings. Primary membrane stress plus primary bending stress induced by combination of loadings, except as provided in d. below. d. General primary membrane stress induced by combination of earthquake or wind pressure with other loadings (See definitions pages beginn-ing473.) MAXIMUM ALLOWABLE STRESS Sa The smaller of S. or the value of factor B determined by the procedure described in Code UG 23 (b) (2) S 1.5 Sa 1.2 times the stress permitted in a., b., or c. This rule applicable to stresses exerted by internal or external pressure or axial compressive load on a cylinder. Seismic force and wind pressure need not be considered to act simultaneously. S.= Maximum allowable stress in tension for carbon and low alloy steel Code Table UCS-23; for high alloy steel Code Table UHA-23., psi. (See properties of materials page 180- 184,)
  • 10. / , STRESSES IN CYLINDRICAL SHELL Uniforminternalorexternalpressureinducesinthelongitudinal eamtwotimeslargerunit s stress than in the circumferentialseam becauseof the geometryof the cylinder. A vessel under external pressure, when other forces (wind, earthquake, etc. ) are not Tn C l factors, must be designed to resist the circumferential buckling o oy h .d i e od d t e e ts m o tie rdg e qn u e r e o m t e hl s t t o . aeh d h h s e h f i’ W i o n a e n n r rg i s present, these combined loadings m g oa a h v e e p a rw v be ir a i ed q r u e n yl n e t l i r l e t t p h w l a wh a s a n t t i esac f r a c te t c ssrr y ui m f se r u t n o ie a l nl h i t e h oi c h b o e ct k i ln gy p r T o t m v c o m p sh r edt s t se r i xv e etu r e a e r t ss n e se a o dtl trs i r e in p lt u r es e r s n se a o l r e p s s nn u e d e s u b d e t a e tr lf o n em d u l a y s : h b m i lr e h e s F t . D $ R M U L A S C I R C U M F E R E N T I A LL O N G I T U D I N A L J O I N JT O I N . + O s, .$ 3 ‘ D= P= s, = s* = [ = S2 ‘ s, ‘/ ~ ,R T s~ = ~ M I N O T A T I O N d ie ao vm a eei ts n e s c e h l f , r e n ot e e x r pt n r e a p s n s a ur l r s e , er l s i Longitudinal stress, psi 1 Circumferential (hoop) stress, psi Thickness of shell, corrosion allowance excluded, inches EXAMPLE ;iven D = P= f = 96 inches 15 psi 0.25 inches PD s, = ~ s* = $ 15 X 96 = ~ = 1440 psi 15 X 96 = = 2 p 8 8s l mi v p h t cr e e h s 2 X 0.25 F s t s o u gt i i w n n p t d r er a er re ss nl s r a i n l o r h en o e w t uc r i o rc v ea ep s rera on x t is fm a nt re hm v b p sb o e d H=% 3 w Hh= C 2 het d i db c c ghao aa wi d e u I y ae : e t o er h i r o t i ei fc ( ga w l h e t t r f , .
  • 11. I P N R 1. OPERATING PRESSURE The pressure which is required for the process, served by the vessel, at which the vessel is normally operated. 2. DESIGN PRESSURE The pressure used in the design ofa vessel. It is recommended to design a vessel and its parts for a higher pressure than the operating pressure. A design pressure higher than the operating pressure with 30 psi or 10 percent, whichever is the greater, will satis@this requirement, The pressure of the fluid and other contents of the vessel should also be taken into consideration. See tables on page 29 for pressure of fluid. 3. MAXIMUM ALLOWABLE WORKING PRESSURE The internal pressure at which the weakest element of the vessel is loaded to the ultimate permissible point, when the vessel is assumed to be: (a) in corroded condition (b) under the effect ofa designated temperature (c) in normal operating position at the top (d) undertheeffectof otherloadings(wind load, external pressure, hydrostatic pressure, etc.) which are additive to the internal pressure. When calculations are not made, the design pressure may be used as the maximum allowable working pressure (MA WP) code 3-2. A common practice followed by many users and manufacturers of pressure vessels is to limit the maximum allowable working pressure by the head or shell, not by small elements as flanges, openings, etc. See tables on page 28 for maximum allowable pressure for flanges. See tables on page 142 for maximum allowable pressure for pipes. The term, maximum allowable pressure, new and cold, is used very oflen, It means the pressure at which the weakest element of the vessel is loaded to the ultimate permissible point, when the vessel: (a) is not corroded (new) n (b) t i h t ( te and the other conditions (c and d above) also need not to be taken into consideration. 4. HYDROSTATIC TEST PRESSURE O and one-halfntimes the maximum allowable working pressure or the design e pressure to be marked on the vessel when calculations are not made to determine the maximum allowable working pressure. If the stress value of the vessel material at the design temperature is less than at the test temperature, the hydrostatic test pressure should be increased proportionally. H y d r t o ss t be h t o ac i cns a d a a ftc a t b le r hdl b u l l e i e c a c t r i e aol n o m p le e ts e n d .
  • 12. I t c pressurehshall be: s , si e en s t h at e t 1 StressValueS Temperature )( M A . W.Press. x o a l l x 5 w. . StressValueS At Design Temperature (Or Design Press.) V f e w s tsh me e al xsr li h a l s a b h g ee aa p ss r l t e n t a , s P r S i e m r H y d av r i yc l e w uw m r br k l e e si ns m t g i r t e mo e a o p l i b u l ei h te dt u o ra e hb s s t w nl n e : e eh d + e 900 lb r t o o m u l t t ii - sc h ea ms t b sf r eo ( G s t e a c v C U e l s d- : e9 e 9 ) A Pneumatic test may be used in lieu of a hydrostatic test per Code UG-100 P s a tr t eo e s so ma t a t f b lxa s i li so mho uw m r b k l e e s t ns h g l w o p a r w i u r eh e n ro ae p n g t ta vh o n e r fh s yb c t o f e m w lo s ua t i t i e e f dt a c t oh r y c a s n ne p t s s o us r a a fn e ce s eCt r U i f o, e - d d1 p r i c y b G 0 n e1 . t s 5. MAXIMUMALLOWABLESTRESS VALUES The maximuma l a g i it t b u i t l o n g ic t C p U o s ct g l l t o e s a v b s l a ie e l l r f m d i i est f m so e e d r e e r nr i t a w n t p r e u es t f a t r ova p 1b eaT n l m n g e x9n l ie l mo o u m a s rb e l ts es ri v e e 8 a ah c. we m p sd e c hy o l e i s n gsh er u i eb t al l l e o ct at p s ed rh i o n do g u o e s d d n n c jf l d a o u m p sn e itl t s r v se h b hsh ee s t a e n re c ml c i t on r e d i n d i r a s i s d la l l e abC cd & d -r e 2 . 3 , , . s e 6. JOINT EFFICIENCY The efficiency of different types of welded joints are given in table on page 172. The efficiency of seamless heads is tabulated on page 176. T f o l p l o c aw o i h t h i ac k nm e a s t n f r e q u t e no y s l u s t g f i t l .v o ~o g h i t es T e s f fg n o g t eu am t s ic s n at m esr p e uq h tu o e a r e r u lo d w i ee ld xs h a li l mdw uwo m r br kl ef ei st n sm g o r h e o e a p u o ar ay h h e p eT d f n s l a r h m y d l i. s n a hs i c e a f lr l ee o f cd o l u l e r d a un ed i r n aa tl n g s u i es u m a h ,v oc l ee i r y n l s . i t h rg t se i ws e g s oot na e hln e mch ir r l lc u m f j e r en n t ie a il h e r i w v t n e h y o ii l i t e o ch y te s l- ao hn sga hn lt u fe d f i f n eiia ocl w ne n ct y , c e n n s ij o i h f e l n e r besides the internal pressure additional loadings(wind load, reaction of s t t a t s a cd d a l eu r n s g ) i i t ue ed o g t n de l i T sr i g ef o ih ai r . s o o e l o s b n i n a n n n n r sh a t r ri t i eg s t ss i i ph er go s t nau eq i h n m n ad oe r - e h ha e s n per iu o n c ah l s f it t h o ne g is s t e u sd i n a a l m lr h e n e . T f o r htm g u s l io a h c src o r t rda e nh g m y : f e e i l t PR = 24SE+ 0.4P Seenotation on page 22. P= 2SEt R – 0.4t
  • 13. I P N R FORMULAS IN TERMS OF INSJDEDIMENSIONS NOTATION P = D p e o p vt w S= S E = J e o f ip i c 1i e a n c t y 7 . f n g r s o e m i s a s l aul n o R =x I a br . l a e d i n i dc u eh s g r w e r n si e , r r pe k i s s n ug r = eI s D i nd i s a i m n e d t c e h i e r , e o rm a e p t p e u ss ai e a i t l g h i ,i c e k n n ec s h , e a l s r t = f s C = C o rA r l o o w .n a nn c e . a l is i o c h A CYLINDRICAL SHELL ( t R e PR f= SE– O.6P P L S E O A N s t su i a t ll h s l e i yg h s ev S e ar en t r o e o n s n p r ep c e a d i g n g e . 2 W [ w h t h aieh c x ok. lhn o ete is a n s nd e cn le r o P e d x 0 i c S ue f e 3 o dr E 8 hm i u5 a .t s gr s i t C A po h 1 s e d nah dp - ei a x l l i 2e p b e p SPHERE HEMISPHERICAL PR ‘= 2SE–0,2P 2 s s e s M G ) SE t = m-m 1. U B e s p= g i me g s . n s ls h i f e lv, ae s e l de . HEAD 2SE t R +0.2t r 1- R -1 -– f 1. F h w e ias a t o t o t h t s ej h hi o t s i e hh a [ 2 W t w h t h aiee h 0 S . t f 6 o gE r I s b -h p a a3 p . . Ih r d lo r t aiu e gft fhg si u a s n i ol a e f it e eed hfno f l s t l i e m fa e s d n e h c x 0k. l cn o. ee e s e 3x d nR P l s 6 hm ti u5 lv , a epo h p i C A s e l li , e l d e . t ce i , e n e c h ta i { e n c hc f s . 6 c 5s e e e n n n d ei d e 2:1 ELLIPSOIDAL HEAD I b 0 “ PD ‘= 2SE– O.2P 1. F a 1 /1 = 1>/4 e l l ih p o m a ii o n 4 ( P= -Dy;jt s o t i hr ra o lta sm r t , a eh j e o o w e a d d e h i n t 2 1 os hC r A e a o espr e nd n : , de ei x t id h s p c ) .
  • 14. E D ED P = S= 1 5 E = 0 j s S AI G T X NA p d p e r s p 7s vt5 o 1 p @6 5 l . e . f f oi s cp 8 o s o i h n a h h e : E = 1 j . e o 0f oi is c0 ei n e , n m tc l y e f a s f h e a d s n i rc n a h d i i8 d u s e s e s * e is sg u R n= 4 i i r e n i c e 6 s e rsa 0 e l 0 s Diu= s9 i e w f Au dh i ia hr k n lne edt s e lh r , *e S e q [ n i sa mi d c t” = r I F ic e s 5 7 a 00 t e C ym = i 0 n .ef i d . n A 1 c ra 2h ol es iws o u n n c e c o rl . 5 o o 5t e - n xc a i e , c .o crd or o ng d d vi e n a d ot n e i o t i r e e t t m sl e i f l * s d H n a w t c i o r a rh t ol s iw o e n n c e l o h a l l SEEDESIGNDATAABOVE SEE DESIGN[),N”f’AIK)VE A I)c[crmincIhc rcquird lhicknms, 01” shell o ,= = ().325 in. fhwrmine the maximum:Ill(nv;Ible If(whingpressure, P I’br().5()() in thi~k kh{.11 wtlrn Ihc tIS<,Il i, in IICW currditi(m. () 125 in. I(K) x 48.1?5 P = I7500 x 0.85 -- 0.6 x 100 + C.A. 17500 x ().X5 x ().5(M) - 154psi 48 + x in. fJse: ().50() in, pkrfc —. SEE DESIGNDATAABOVE The head furnishedwithmrtslraigh[ Ilwrge. Detcrrnirrethe required thickness. I d’ ii hemispherical head. /= ]00 x 48, Izfi 2 x I7500 x 0.85 -- 0.2 x I00 SEE DESIGNL)A’rA ABOVE Determine IIw maximumallowuhlcvrn-kingpressure. P I’or().3125 in [hi(k head. when it is in IICNctmdili(m = ().16? in. + C.A. p ,.. ,? x I7500 x 0.X5x 0.3 I25 W + 0.2 x (),3I25 0.125 in. + IOJ p~i 0.287 in. Use: ().3125 in MIN. HEAD SEE DESIGNDATAABOVE Dctcrrninethe requiredthicknessot’a SCJMICSS ellipsoidal head 100 X 96.25 ‘ - – — = 0,275 in. 0.2 x 100 + C.A. 0.125 in, 2 x 17500 x 1.0 in, Use: o 437s in, MIN. THK. HEAD SEE DESIGNDA’I’A ABOVE Determinethe maximumdlmv:iblc U[wkingprcwurc. P for 0,275 in. thick. seamless head !’heni! is in corroded condition. 2 X 17500 X 1,0 X 0.275 96.?5 + 0.2 x 0.275— = 10(1psi
  • 15. I P N FORMULAS IN TERMS OF INSIDE DIMENS1ONS D = I NOTATION P = D w S= . E = J R = I d i s ai m n e d tc e e hr , e n i hb o l t ei an n (c lhI a e p f u d fe r . d n eg g l r e e ,e s i r n o, d e di i d as i in suc e sh lg k n n sr u a i c dd nk i e c u e h s i l t e h 2i i c k n ln ec s l s , e a h l is i o n h so r a r l o o w n a nc c e , = p e r s o e m i s a s l aul n o a w Oa g r ex o p r r pe k s i sn u g r s ea Sv to m r a ;p t ps e u ss ai e= I i a l r L a f r = I e o f ip i c 1 e a n c t y g,r = W f i n 7 rn a i d n i d u hs s i c e e= C , 1 CONE ‘ c CONICAL SECTION 2SEt c ‘= 2D + 1.2t s a (SE– O.6P) = o a o a 1 T h a a a h ann g l r t e e f e ah p g e l 3o x . , t ea t 0 ‘D W i g h r t e 3 s na pa t a n eia rac re l i q n a ;s e h . e 0 s y u ( A C p 1o e- d 5 d (e i ex p n ) ) A % ~ 2 A E F S L A M D N G HE S D H I N E E ( T O R I S P H E R IE A LA H C W ‘ = 1 h 0.885PL f= SE– o. 1 ‘ 6/ e P= ED A D 2 n SEt 0.885 L+0.lt fr P ~ When Vr l < 1 ‘ M t PLM ‘= 2SE– O.2P 1. J V .0 r A O L F 50 U A 0 1e h s s n 2SEt ‘= LM+oo2t “E C S T O F R M ” 3 1 2 3 q . 0 1 M * a : L = D + 2t (see note 2 on f p a ca i
  • 16. 21 E X DESIGN DATA: P = lOOpsi esign d pressure S = 17500 psistressvalueof SA515-70 plate@650°F E = 0.85,efficiency ofspot-examined joints E = 1.00,jointefficiencyfsearnless o R = 48inchesinsideradius* D = 96inches inside diameter* wallthickness, inches ~ = required L = 30°0nehalfofthe apexangle t = Resuiredwallthickness inches C.A = 0,125inchescon-osionallowance * incorrodedcondition greaterwith thecorrosionllowance a SEE DESIGN DATAABOVE Cos30° = 0.866 Determine the required thickness, r of a cone SEE DESIGN DATAABOVE Determine the maximum allowable working pressure, P for 0.500 in. thick cone, when the vessel is in new condition. 100x 96.25 (17500 X ‘2X 0.866 2x +C.A. Use0,500in.plate 0,125in. 0.500in. xO.85 xO.500 0.866= 133psi x 96+ 1.2XOo500Xo.866 SEE DESIGN DATAABOVE SEE DESIGN DATAABOVE L/r = 16$ Determine the maximum allowable working pressure, P for 0.6875 in. thick seamless head, when the vessel is in new condition. Determine the required thickness, t of a seamless ASME flanged and dished head. f= 0.885X100x96.I25 17500x 1.0-0.1x 100 +C.A. Use0.625in.plate =0.486 in. (j 0.125in. 0.606in. Use0.625in.min.thickhead o L i g t rt a NOTE: When the r A b4 c a ml b tu fl c a = 141psi SEEDESIGNDATA ABOVE ~= 61 ~= 1.75 from table. Determine the required thickness t of a seamless ASME flanged and dished head. 100x96,125X1.75 t= ‘0.481 in. 100 2 x 17500 +C.A. 1,0x0,6875 17500x 0.885x96+ 0,1 x0,6875 0.125in. 0.611in. SEEDESIGNDATA ABOVE Knuckle radius r = 6 in. L/r= p. % Knuckle radius r = 6 in. L/r= ~ = 16 A4= 1.75 from table Determine the maximum allowable working pressure, P for a 0.481 in. thick seamless head when the vessel is in corroded condition. p= 2 x 17500X1.0xO.481 = 100psi 96.125X 1.75+0,2 xO.481 i 1 a no to6f nca s - r n3 C tn or uv c te ai o hl ) / e h r o e s t ,d o n oy tir eh%d +uk L l y ae ( / a em l l : = r 3 ) u
  • 17. 22 I P N FORMULAS IN TERMS OF OUTSIDE DIMENSIONS NOTATION P=D p e op vt w S= S 1 7 E = Joint efficiency,page 1 r s o e m i s a s l au n o wx O a u radius,einches i g l r = e b .lt r s d e r r pe k s i sn u g r: eO s d i e u i ti as m i n e d tc e hr = o rm a a p t p e u ss ai e W i t l g h a , i c e k n ln ec s l s , e l s r = a f i h 8 9 C.A: = Comosionallowance,inches A CYLINDRICAL SHELL ( + PR * = SE + 0.4P R L S P = R y;4t E O , e A N . b ~ 1 U G3) 2 B s t su ia t l h sl .e i y gh so e v s e ar en t r o e n S n p 1 a g e 4 W t w h t h aiee c x o . lh n o ee is a ns nd h k c n t le r o P e d x 0i c S u. et fse 3 o dr gE 8shm v u a r i 5 t C A po h 1 s e d nah dp - ei a x l l i 2 e p b e p g ss lh e l SPHERE and HEMISPHERICAL HEAD PR f = 2SE + 0.8P @ f d’ R 1 F h o t h o t s P - ~ y; B* w e i a s a t f r d .loa r t as e gft fhgsi t ce o t h u i u n h t s e h hi i o la e t fi te le hf o fl is t hc f j i e n d a i e hh a e m f a e s d n e . t h R S . t P E h , e 1-3,shallbe applied. c 2:1 ELLIPSOIDAL HEAD PD h ‘= 2S45+1,8P - P=D~l— . + 1 F e l l h p w o t a h d od t el m s h at ,a he j i o e s ir . r a a r i m a ii o tn t 2 s hh :A e ps e1p r e n n 4 , x o C i r ao s 1 - d u h = D14
  • 18. 23 E X DESIGN DATA: P = IOOpsidesignpressure S = 17500 psistressva1ueof SA515-70plate@650°F E= O.8&efliciencyofspot-examined joints ofshellandhemis.headtoshell E = 1.00,jointefficiencyfseamless o E = 1.OOjointefficiency ofseamlessheads l? =48inchesoutsideriidius D= 96 inchesoutsidediameter t =Requiredwallthickness, inches C.A.= 0.125inchescorosionallowance SEE DESIGN DATAABOVE SEE DESIGN DATAABOVE Determine the required thickness, t of a shell Determine the maximum allowable working pressure, P for 0.500 in. thick shell when the vessel is in new condition. 100X48 ‘= 17500x0.85-0.4x 100 ‘0”322 ‘n” +C.A. P= 0.125in. 0.447in. 17500xO.85xO.500 = 155psi 48-0.4 x0,500 Use: .500in.thickplate 0 SEE DESIGN DATAABOVE Head furnished without straight flange. Determine the required thickness, t of a hemispherical head. t= 2x17500 %;t0.8x100 + ‘0-161 ‘r- C 0. A . i SEE DESIGN DATAABOVE Determine the maximum allowable working pressure, P for 0.3125 in. thick head, when the vessel is in new condition. ip. 1. 2x 17500xO.85x().3125 48-0.8 x0,3125 n 2 5 =194psi . 0.286in. Use:0.3215in.min.thickhead SEE DESIGN DATAABOVE SEE DESIGN DATAABOVE Determine the required thickness t of a seamless ellipsoidal head. Determine the maximum allowable working pressure, P for 0.273 in. thick head, when it is in new condition. t= 100x96 2 x 17500 X 1 1 . +C.A. Use0.4375in.min.thickhead . 0 0,125in. 0.398in. x 8 p. + 2X 17500x1.0X 96-1.8 xO.273 = 100psi
  • 19. I P N FORMULAS TERMSOF OUTSIDEDIMENSIONS IN N ~ A T I O N Outsidediameter.inches ~ = one half of the included(apex) P = Designpressureor max. allowable d n eg g l r e e w o p r r psi s ke i s n ug r ea a s i S= S v & o m e a p ts p e u ss ai e= O f l g r t , o d dii i dn a l r L a i u e E = J e o f ur R=O ,e s e uc s sh k n n sr u a i c dd nk i e l u e h i c t e h 2 ic k n ln ec s l s , e a i h o r a rl o o w n a nc c e l is i o n h s r = I f ip i c 1 e a n c t y g, = W i n 7 C.A: = C t a i s d ni i d u e h s c e , ) CONE CONICAL SECTION PD ‘=2 Cos CY (SE+ O.4P) d p= 2bsEfCos CY a D –0.8t 1 T h a a a h ap n g g re e e o ea n l .t l 3 f x h t , ea t 0 2 W i h g rt e 3 sna pa0 a n ea rac r e l i qny a , s e h .t e i s ° u “ ( A C p 1 o e- d 5 d ( e i ex ) p n ) @L E A F sL A M D N G HE S D H I N E E ( T O R I S P HHE R I E A L A C W h = 1 e 0.885PL 2=SE + 0.8P f W n 6 L P= Lh T 2 / r ED D / SEt 0.885L– O.8t e1 e h 6s n a2 s . i PL M f= 2SE+P(M– O.2)’ 2SEt ‘= ML –t(ikf-O.2) VALUES OF FACTOR M ‘ / 1. 1 M 1 1. 2 1. 0 2 .r 2 4 .0 0 5 3 .0 6. 0 3. 5 0 5. 50 3. 2 5 4 .7 5 2. 7 5 5. 2 5 6 .0 5 . 00 .0 0 16 0 2. % ‘ 7 : L-t = D q . 2
  • 20. 25 E X 3ESIGN DATA: P = IOOpsi designpressure S = 17500 psistressvalueof SA 515-70 plate@650°F E = 0.85,efficiencyfspot-examinedjoints o E = 1.00,jointefficiencyfseamlessheads o R = 48inches outside radius D = 96inchesoutside dimeter ~ = 3@onehalfofthe apexmgle L = 96inchesoutsideadiusofdish r t = Requiredwallthickness, inches C.A = 0.125inchescomosionallowmce SEE DESIGN DATAABOVE SEE DESIGN DATAABOVE :0s 30° = 0.866 Determine the required thickness, t of a cone 00 96 ‘=2 x0.866X(l50; X0.85+Oc4X 100) = =0.372 in. Determine the maximum allowable working pressure, P for 0.500 in. thick cone. +-CA. ~= 2X 17500X ().5()()X().866= 134psi C).85X 96- (0.8xO.500xO.866) 0.125in. 0.497in. Use:0.500in.thickplate SEE DESIGN DATAABOVE SEE DESIGN DATAABOVE L/r = 16$ Determine the required thickness, t of a seamless ASME flanged and dished head. Determine the maximum allowable working pressure, P for 0.625 in. thick seamless head, when the vessel is in corroded condition. 0,885x 100x96 =0.483 in. ‘= 17500x1.0+0.8x 100 +C.A. U 0 0.125in. 0.608in. in.min.thickhead 2 : s. 6e 17500x 1.0xO.625 P= 0.885 SEE DESIGN DATAABOVE % ~ =1 Knuckle radius r= 6 i M M 1.75 from table. Determine the required thickness t of a seamless ASME flanged and dished head. 100X96X 1.75 t= =0.478 in. 2x 17500x1.0x 100(1.75-0.2) +-CA. 0.125in. 0.603in. 5 SEE DESIGN DATAABOVE K r p= 6 in. L/r= ~ =16 ~= 1.75 from table. Determine the maximum allowable working pressure, P for a 0.478 in. thick seamless head when the vessel is in corroded condition. 2X17500x1.OX().478 . ‘= 1.75X96-0478(1.75-0.2)=100ps* Use0.625in.min.thickhead t r h o L i e g t r t n i 1 ea ho n f or a n or -n s nt tr uv c e ai o hl ) a h / e ,( t e6s c C o :d t o n NOTE: W Mm ca a l yb t u f l c b o a eA eh%d + ~ tr m u l ly ae ( : = 3 )
  • 21. &u Y I E P F NOTATION E=joint efficiency P = Internal or external design pressure psi d =Inside diameter ofshell, in. S =Maximumaflowable stiessvalue ofmaterial, psi t = Minimum required thickness of head, exclusive of corrosion allowance, in. t~ = Actual thickness of head exclusive of corrosion allowance, in. tr = Minimumrequired thicknessof seamless shell for pressure, in. t~ = Actual thickness of shell, exclusive of corrosion allowance, in.
  • 22. 27 I E P E DESIGNDATA P = 300 psi design pressure E=joint d =24in. inside diameter ofshell efficiency s =15,0001psi maximum allowable stress value of SA-515-60 plate tr =0.243 i required thickness of seamless shell for pressure. n . t~ =0.3125 in. actual thickness ofshell. DETERMINE THE MINIMUM REQUIRED THICKNESS, t t=d ~ 0.13 PISE = 24 ~ 0.13x300/15,000 x 1 = 1.223 in. Use l.250in. head t~ Checking the limitationof — d = 1.250 — 24 = 0.052, Theratio ofhead thickness to the diameter of the shell is satisfactory SEE DESIGN DATA ABOVE c = 0.33 ; s = 0,33 — t = d = 0.243 0.3125 = 0.26 0.26 x 300/1 ~,000 x 1 == 1.731 in. = 24 Use 1.75 in. plate Using thicker plate for shell, alesser thickness wfil be satisfactory for the head t~ = 0.375 i n c = 0.33 + 0.243 = 0.33 — = 0.214 t= d & . 0.375 = 24 J 0.214 x 300/15,000 x 1 = 1.57 in. Use 1.625 in. plate The shell thickness shall be maintained along a distance 2 dt, from the J inside face of the head 2 m = 6 in” - .. . . . .... . . “
  • 23. 28 PRESSURE – TEMPERATURE RATINGS F S T O FLANGES AND FLANGED FITTINGS P E I E R P L E American National Standard ANSI B16.5-1981 150lb. 300 l HYDROSTATIC TEST PRESSURE, PSIG 450 1125 4 6 b lb. 900 l 0 .1 0 b l 2225 1500 3350 0l . 25b 0 l 5575 9275 b 50 TEMPERATURE, MAXIMUMALLOWABLENON-SHOCKpRESSURE PSIG. F -20 to 100 200 300 400 285 260 230 200 740 675 655 635 990 900 875 845 1480 1350 1315 1270 2220 2025 1970 1900 3705 3375 3280 3170 6170 5625 5470 5280 500 600 650 700 170 140 125 110 600 550 535 535 800 730 715 710 1200 1095 1075 1065 1795 1640 1610 1600 2995 2735 2685 2665 4990 4560 4475 4440 750 800 850 900 95 80 65 50 505 410 270 170 670 550 355 230 1010 325 535 345 1510 1235 805 515 2520 2060 1340 860 4200 3430 2230 1430 950 1000 35 20 105 50 140 70 205 105 310 155 515 260 860 430 Ratings apply to materials: SA-1051’2 SA-515-702 SA-516-702 SA-537-C1.13 SA-216-WCB2 SA-181-70]’2 SA-350-LF2 NOTES: 1. For service temperatures above 850 F it is recommended that killed steels containing not less than 0.10070 residual silicon be used. 2. Upon prolonged exposure to temperatures above 800 F, the carbide phase of carbon steel may be converted to graphite. a s t h ne hb r u i ai et o shl i a cl e k b n e e o s n s v n a l 21/2 i t d e 3. T m Flangesof ANSIB16.5shall not be used for higher ratings exceptwhereit is justified by the design methods of the Code. Ratings are maximum allowable non-shock working pressures expressedas gage pressure, at the tabulated temperatures and may be interpolated between temperatures shown, Temperatures are those on the inside of the pressure-containing shell of the f l I g a en i ni g t e se r a a t a lho t, . n h m ot s ne m h aa st i t en f r e i d a c a te e l
  • 24. 2 - P F STATIC HEAD The fluid in the vessel exerts pressure on the vessel wall. The intensity of the pressure when the fluid is at rest is equal in all directions on the sides or t t h u e t h i f s g l o h b u t o iof h v d o a e t e p e i bottom of the vessel and i d a w t h p T v s T w t T t ri h t s e ha w s a b a t e a t ph p a s i el e l . hb e s e t nt h u i s s l t r de e e r r c e b c hd a i a e ds . b t a lt e d d nd l e l r s eo d i s p eh e t l r e e o lsb oh wt t it wpo w re ea h h h a e n e e s s . o eu n h g s r s e u n i re no t eg h a s pi r f has os o uf o ren l e h w e n d t t u hr ti y v td a a es hi in u , v e e e ea r g l rt h bb h u l e i tl sp s li li ge ht rc o ti fh v i e ic co hn s y d e i r a t di m l a w t p e d a f l t u i f e P H F f ie c c o hs r e o e ie P s a op s d e2 1 uu S , 3t r qI e n 4 eud Dn asi f n 5 f r rc eo eW he a nr Hf e r o a 6 7 8 t d t se 9 0 b w a a F at h e r e e .q n r h u etp oa r t p eus s s i n 3 uund r a e c p 4 i l3 qs e T f t p i r pe s ns h q o udu are fae h r on e n e e i h te r a y va ta dh bt o n s i fe n cr g i to be m u t l f t h i b eph e l 4 e a 3 . y e t d 3 y . H o eW a aF i d t o e sr ee s f tper o n n P nr r t e a C r C d it e g s si o un r i P op S u qI n eu nn a d s r rc e h 0 1 2 3 4 5 6 7 8 9 0 i t
  • 25. 30 T f q c u o om i po r cr e i r qs k o t n h a p u li ir aace weight forevarioussmaterialsdand fk d t n ne s at different degree of radiographic examination. A Stress values at tem~. -20 to 650° F. . S A C S 5 2 S 5 8 S 5 - 3 1 5 1 5 6 A B S 1 - 5 6 A 0 5 - 5 6 A 0 6 S 1 85V0J. E. 12750 14875 100Yo J. E. B 11730 13800 15000 17500 Ratios of Stress Values 11730 12750 13800 14875 15000 17500 11730 — 1.09 1.18 1.27 1.28 1.49 12750 0.92 — 1.08 1.17 1.18 1.37 13800 0.85 0.92 — 1.08 1.09 1.27 14875 0.79 0.86 0.93 — 1.01 1.18 15000 0.78 0.85 0.92 0.99 — 1.17 17500 0.67 0.73 0.79 “ 0.85 0.86 — Table A shows the stress value of the most frequently used shell and head materials. Table B shows the ratios of these stress values. EXAMPLE: 1. Foravesselusing SA 5 15-70 plate, whenspotradiographed, therequiredthickness 0.4426 inches and the weight of the vessel 12600 lbs. 2. What plate thickness will be required and what will the weight of the vessel be, using SA 285-C plate and fill radiographic examination: In case 1. The stress value of the material 14875 In case 2. The stress value of the material 13800 The ratio of the two stress values tlom Table B = 1.08. In this proportion will be increased the required plate thickness and the weight of the vessel. 0.4426 x 1.08 = 0.4780 in. 12600 X 1.08= 13608 lb.
  • 26. 31 E D V w r e e e P rs P e is g s un r X e e i sn s f es n e u d s o ee n dx i w c ero er r r n k o si1 l s n o t e l r v d t p e re a p u a h t b is tr c w a th C i p s oe e h dd m e oy t m dhn b oe mot pwi l e c o e fo e x l tp o ee er s ssn s ah u l r e a e sf , ila m ln oee a d l r br d g a x i x p t e r e 1S p s o u pr ce m r o n s a 2 l s f te e oi m 5 a r xa rh n r th t p x pt r e e w s h s i aiucs l r h m ee Ca, v l e -ro ( r n L l e r sJ . 2 d f e lg r e e s s tn a gi n c i l m o r uw ie m n s u e o s G 8 ) A v e w s hd s e i s i a ic l o n h s n te sr d u r c e t od e u d i f dei m no n to es e c g n t C q r e et p r a e w s s i hu n er i q b u c d e r s e ai s e g x n pto e ee d or 1 sp r sa n ul r te d i hf d o r n e r o l n ne be d se es r i s gd no t u e e e d x opoe her o C t r f t d l t e crs o s rn sed ui tr e n a l H o w e e xv p e r r re, s a sao t ul n t e r nm b s r wa n t o gi s w t ohtea un m d hp e i he y C i l C re e o u i fr de m xse pt tor s ar ms Ca r ule r r o ( G nt q s e n e e e n s U e d- eo . f2 et T s 2 F a U - nh h b a a p i o tpl v l l i i o t h spe da s a tr ef ae tlp be s dme t u itlr e n i s e e e e m e r a t d e n rhs ie d0i se dtg e u rnt rmC ei U e -shd ( ( do y 6 e ce 2 o S p s eb n o C C ( t H a 5t v b e A c o 1i i ) mts d i p e y s c f tt n o h e s o t a e . V C e w s l s ji e o U - 2 ( o d T P re e s s s lC ia s U t n ei u tr o t2 - h G ( sp N : d 8 ) c y eg i ovn l G de 8r j is a cn sac l e k ) e S i n g vl e e - d w e a s l f l e v gl a n so oc s s i e p d u v ru ar to m c i s n u rb hlul a a s u b t j a e i c n t he y e d r r t o o o an w a t a ih h ys d r t o t si tr a t t d n s t e l c e n n e p r a c t a pc n be l t ue m e-a ( si c t i a , U t o 9 f . G 9 ) i my a c E d i it o t y hs t ee pm r a as a a b h e p fr t nd l ls et e u1 o t h t e s t i a t/ m l e s e 1r s i f f b e er e t n wc a ee r m e o s par h e l r s t i s m u in r nh e i e m d s u e n o t m p n e a c d n a t e b p rn e U s -u s ( t u e r e9 . f r s o a l l G 9 ) P n T V t d e tu m e a U t -s i C o c t 1d : 0e G 0 e m h se o t it f g e l p lh ocd a w o i t g A f e o S f s P o mr o h n o n nn g C e r M e S s e V s c De t 1 iT Is c I l I o no V h a. 4 at . 4 .ta e he s e Ih p r g x c r se nf r C ho di e s . e dos E s o r 2 p t7 r u
  • 27. 32 PRESSURE X E FORMULAS N O T A T I O N P= P = d.= L = External design pressure, psig. Maxunumallowableworking pressure, psig. Outside diameter, in. the length, in. ofvessel section between: 1. circumferential line on a head at one-third the depth of the head-tangent line, 2. stiffening rings 3. jacket closure 4. cone-toqdinderjunction or knuckle-to-cylinderjunction of a toriconicalhead or section, 5. tube sheets (see pa e 39) t = Minimum requiredwa fi thickness, in. m 2 A. D. 1~ t. , CYLINDRICAL SHELL Seamless or with Longitudinal Butt Joints When D./l equal to or greater than 10 the maximum allowable pressure: 4B Pa = 3(D0It ) T value of B h shall be determined by the fole lowing procedure: 1. Assume a value for t; See pages 49-511) n d Determine L/DQ a b oI 2 E F n U Gi O ( e - g42) rat8 the.. value g t .2 P a O a n5 w t L/Dpheis greatere r t 0 of L/DO. E than 50, and at 0.05 when L/D. is l e 0.05. h oo r i z t v t n tl a e rl e iy r e s ne o o l ph 3. M A — t i ! m z A B . A u z 2 u z t E M Lal L ~ F O t pr / o ot n h t ie rm m ne c o t i e . i o s v e t o o y f A t l t dc e a t t el v r l m a i h n a l e c u te o 4 E t n a p t p l e i ac ca be ( l r e p i a aa h m . rt eh 4 3 t v a o4 a M l v ) e o ur tt t t iev c fa A h7 e a p p t he c a l e r l i a e t n r e m p b u * 5 F t ir n t e orh s e h. cm to r i ie zan ov n t a m o o r t ve o a h l B a d u e e f . C o t m m p a u a h t l i e mo u e p ar b kr l x l w w o m s r e , Pa.u If the maximum allowable working pressure is smaller than the design pressure, the design procedure must be repeated increasing the vessel thickness or decreasing L b s t i rf f ei n A F * a c v p p b c F ao A l f o u t t er l l s o i t en a l fh g t ei m p leb r lt a ie v u n a e h e l l c a t r of PO a l a b t u fl a t r ee m c o n h d u l y a e ~ A t s 1 !-$? 2 Pa = 1 W t h v g W S TI I F R TE F b G N II H N a N p p 3 /t) ( D o a Dh e il l n tu e 1 / th o e e fs t i i t Cv U e o - 2 n s8 d ( n Ch ) Gh e l i e de . G 0
  • 28. 33 E E DATA S D I G X N P = IS e x dt e e r sn pressure a i l g n D. = 96 in. outside diatmeter of the shell f e ths ra sl n t e og i a e l n n 4n if t O ie n= 5 o i et ft e l m g e n t Length o t v H 2 e e l a l i :pd s o s i d 1 a M a o t s e S r - i C e 2 l ll h a p f 8 T e m p 5 r F t0u r e 0 e a E = M o of d elasticity ol m u a s t2 e u 7 o p 4 ) a g n e D e t te rr e m q hnut eh i i s h l la A e ° , r 3 0i p 0a @05 f , ,“ 0 ( 0 c0 i0 s J l s h i r ce eek d i e n i me =k0e n l i e ( s. l ps ct 5 t n : 7 8 s l s : 4s 5 a n . a? 0 e . A sa s s t h u h e 0 9 g . e e L ) eL = 592 in. (lengtht of shell 576 in. and one third of the depth of n g h n . ) heads 16 i Do/t = 96/0.5= 192 L/DO= 592/96 = 6.17 A=O.00007 from chart (page 42)determined by the procedure described on the facing page. Since the value of A is falling to the left of the applicable temperature-line in Fig. UCS-28.2 (page 43), P* = 2A E/3( DOlt) = 2 x 0.00007x 27,000,000/3x 192= 6.56 psi. Since tlie maximum allowable pressure P stiffening rings shall be provided. is smaller than the design pressure Using 2 stiffening rings equally spaced between the tangent lines of the heads, Length of one vessel section, L = 200 in.(length of shell 192 in. plus one third of depth of head 8 in.) L/DO= * a 3000 f G ‘k * i *Z ‘ ‘ d f = = from chart (page = s : + “ = e t ap c r( h 4 po a e b r t m p i r n oe dh ee c d 0n c a i g eg Pa = 4B/3(DOlr) o a rm 3 g t sd o cu r e i e b y r . Q = 4 x 3000/3 x 192= 20.8 psi. q GG ‘; “00 e Since the maximum allowable pressure P. is greater than the design pressure P, the assumed thickness of shell using two stiffening rings, is satisfactory. See page 40 for design of stiffening rings. ) e
  • 29. 34 EXTERNAL PRESSURE FORMULAS NOTATION = External design pressure psig. P Pa = Maximum allowable working pressure psig. DO = Outside diameter of the head, in. RO = Outside radius of sphere or hemispherical head, 0.9D0 for ellipsoidal heads, inside crown radius of flanged and dished heads, in. = Minimum required wall thickness, inches. ; = Modulus of elasticity of material, psi. (page 43) SPHERE and HEMISPHERICAL HEAD B The maximum ‘“ = (RO/t) allowable pressure: The value of B shall be determined by the followingprocedure: 1. Assume the value for t and calculate the value of o r m u / ( l) (see page49) a : A using the f 2 E t v t n a p t p mh e a c c t ar e hel r pe i a aa l i . ( b 4 3 a l rg o a A. h Move vertically to e l u e f the applicable temperature line.* 3. From the intersection move horizontally and read t R. t- R. DO - t v o a h B l u e e f . *For values of A falling to the left of the applicable ~~–•°à–•Tá–•Xæ–•temperature line, the value of POcan be calculated by the formula:Pc = 0.0625V~R0/ t ): If the maximum allowable working pressure f’. computed by the formula above, is smaller than the design pressure, a greater value for [ must be selected and the design procedure repeated. 2:1 ELLIPSOIDAL HEAD I R. t +% DO The required thickness shall be the greater of the following thicknesses. (1) The thickness as computed by the formulas given for internal pressure using a design pressure 1.67 times the external pressure and joint efficiency E= 1.00. (2) The thickness proofed by formula Fa=BARo/1) where&=O.9 00, and B to be determined as for sphere. FLANGEDND A DISHED HEAD ASME ( T O R I S P H E R IE A LA H C R. ( + f, The required thickness and maximum allowable pressure shall be computed by the procedures given for ellipsoidal heads. (See above)ROmaximum=D,, W D
  • 30. 35 E X DESIGN DATA: P = 15psigexternal design pressure Do= 96 inches outside diameter of head Material of the head SA-285C plate 500°F design temperature Determine the required head thickness. SEE DESIGN DATA ABOVE Assume a head thickness: t,=0.25 i R = 4 n i 8 . .n A = 0 . 1 2 5 / ( 4 8 . = 0 / 0 . 2 5 0) 0 0 0 6 5 F F r U Ci o ( - g 2 m 8 8 a.3 d e5 t e e r 0 m p i r n 0 oe h S 4p = 2 g ) b t B c d d e s o c t r f i bp e hc da i g n e eg a n . Pa = 8 5 0 0 / ( 4 8 . 0 0 / 0 .p245 ) = 4 ,s 2 i 7 . ~ e . d u y e r . S t i m a n x h cl i l me uo e pa r r k Pa is sexceedingly greater than a w o w m b l i e e ns u g r e the design pressure f’, a lesser thickness would be satisfactory. For a second trial, assume a head thickness: t = 0.1875 in. i 8 . n0 0 . RO= 4 A = 0 . 1 2 5 / ( 4 8 . 0 0 /=0 0 1 8 7. 5 ) 0 . 0 0 5 B = 6 f 7 c ( hp a Pa = B/(RJt) = 6700/256 = 26.2 psi. r 0 0 oag e r 4m 3 t ) , , The assumed thickness: t = 0.1875 in. is satisfactory. SEE DESIGNDATAABOVE. A sah s t u e i m f = 0e n h c ka Procedure(2.) e i s d 3s = n x 2 = . 5 in. . : 1 . A = 0.1 25/(86.4/0.3125)= 0.00045 B = 6100 from chart (page 43 ), Pa = B/( ROr)I= 6100/276= 22.1 psi. Since the maximum allowable pressure Pa i g P t a s r t e t adh t s hh u i i m ak e en s e f a c s t o r y . cs t i d s s t e e rs re p hs a is n s e g SEE DESIGN DATA ABOVE. Procedure (2.) Assume a head thickness: t = 0.3125 in., RO=,DO= 96 in. A = 0.125/(96/0.3125)= 0.0004 f 2 c r ( h 0 4 p o Pa =aB/( m g t= 5200/307, = 16.93 psi. a 0 3 r RO/t) ) e B a5 Since the m ~ t a s a x l i l mo ru Pa i sg l r eu e r adh a p w em b s t t e t s hh u i i m ak e en s e f a c s t o r y . cs t i d s s t e a r s re p e h a is n s e g
  • 31. 36 E P X FORMULAS CONICAL SE(XION D N CONE A WHEN a IS EQUAL TOORLESSTHAN60< and Dlr, > 10 a ax l i l pm r w e am b s l u e r o u s The m L ‘a AX D 4 , ‘ L 3(D,/f,.) = “ s a v s for u athickness, ., e u m ~ l e The valuesof B s b determined thel h a by following procedure: 2 D e t t eL., r and the i , n .L/Dl and , m ratios e 1 A s l% D1/te 3. Enter chart UGO-28(page42) at the wdue E 5 wn L/Dl h e a t of LJDI (.L/D&)( h o or0 i t tov n t z is greater than 5 M line representing~it. From the point of intersection move vefically to determine factor A, 4. Enter the applicable material chart at the value of A* and move verticallyto the line of applicable temperature. From the intersection move horizontally and read the value of B. te a L I a DI ‘1 NOTATION A = factordeterminedfrom fig.UGO-21L0 (page , B = fhctordetermined from 3 charts (pages 4 5 C4 o l m t m m p2 a u ax h t i . l ew o ou e arm w pressure,Pa. 4 7 ) c lh l I e Pa fd s f e e md u is t at d h l e f e hs etr si s l p ra n ( a a g xl r d )e e e t ,e d s i p g hs o n ci , e repeated r s e r must be gd e u n Dl = outside diameter at the increasing the thickness or decreasingL b a = o D s= E = L = Le = P = h o t ian n p d n eeg large end, in. outside diameter at the small e i n modulusof elasticityof material (page 43) length of cone, in. (see page 39) equivalent length of conicalsection, in.(L/’2)(l+D~/Df) external design pressure, . t h i ic k n effective thickness,n. i = t Cos a n q F v d . o A f ol a at ut l l e o r t sa e h n fp l i g cable line, the value of P can be calculated by the formula: Pa = 2A E/3(D,/t,.) For cones havingD A ratio smallerthan 10, see Code UG-33(~(b) W H G I ER EN A 6 a T T H E S R 0 A The thicknessof the conesshallbe the sameas f t the required t h i f c a k nh e o l se s Pa = flbum allowable workingpressure, psi t = minimumrequired te = using of stiffeningrings. e sn s d , P c i o w o t. mc a e h q i l u a c a r h hg t t o fu l e o h nr t e ef e . r a o d v e eiq i d o f a o ctr r u n te y j l u i nSn cp d t 1 e ar e e u c i nn h o e . g 5
  • 32. 37 E X DESIGN DATA F’ = 15 psi external design pressure Material of the cone SA 285-C plate 500 F design temperature CONICAL HEAD a =2 n D( = 9 i e 6 g. D, = O e 2 r. d e 5 Determine the required thickness, t Length, f. =( D1/2)hncx=48/.4142= 115.8,say 116in 1. Assume a head thickness, t, 0.3125 in. 2. fe = t cosa=O.3125 .9239 = 0.288; x / )l= 1 X ( + 0/96) = 58 +1 D 6D 1/ L, =L/2 ( L, /~, =58/96 =0.6 L), Ite = 96/,288 = 333 cf p r 4a o r h a m 2 t g , 3. A =0.00037 ( 4 ~ = (5 c, f 2p r 04 a 0o r h . a m g t 3 s L (1 A7 2 1 w e , e ) ) 4 X 5,200 = 20.8 psi. . 3(333) Since the maximum allowable pressure is greater than the design pressure, the assumed plate thickness is satisfactory. 4B 5 p,, = 3(D,/t@) = CONICAL SECTION (See design data above) DI = 144 in. D e L D, =96 in. a =30 d t t e r r em tqi h n i eic u e r k e n e ed s e L n= [ (gD r D J )h / 2=], / 2 a n a / t t 4 = g s . i 45 m 1 Le=(L/2)(1 L w 1 t i m s 4n . 6 . 0 i . 3 n7 . 6 ~ ( O . . 8 36 , 7 =5 0 . 3 2 4 X ) + D~Dl)=41.62 X + 9 I $ S O , 7 17 a 2 t =tC . ’ 6 = /3 1 4 4 4. ) 6 Le/D[ = 3 4 . 6 7 / 1 4 4 = 0 . 2 4 1 D1/te= 1 4 4 / 4 0 . 3 2 4 = 4 4 3. A =0.00065 (from chart, page42J 4 B= 8( , c f 6 p r 0 a. o0 r h 4 a m 3 t g 2 1 4 4 94 6 4 X8 6 2 5. pa = 4B = 3 X (144/0.324) 4 4 3(DJr J s i . = 25.8 p a n xh cl i l me rw e P. is sgreater eu a po u ea b ls than the d m r e e p rs e i s P, the assumed thickness is satisfactory. EXAMPLES 7 & , 0 s g u
  • 33. 39 E P X FORMULAS 7 L J o T R L Use L in calculation as shown when the strength of joints of cone to cylinder does not meet the requirements described on pages 163-169 It will result the thickness for the cone not less than the minimumrequired thickness for the joining qdindrical shell. 7 H Use L in calculationas shownwhen the strength of joints of cone to cylinder meets the requirements described on pages 163-169 r L. 1 -a
  • 34. 40 E P DESIGN OF STIFFENING X RINGS NOTATION A : Factor determined from the chart (page 42) for the material used in the stiffening ring. A, = Cross sectional area of the stiffening ring, sq. in. DO= Outside Diameter of shell, in. E = Modulus of elasticity of material (see chart on page 43) 1, = Required moment of inertia of the stiffening ring about its neutral axis parallel to the axis of the shell, in.4. f’,, = Required moment of inertia of the stiffening ring combined with the shell section which is taken as contributing to the moment of inertia. The width of the shell section 1.10 @ in.4. L, = The sum ofone-halfofthe distances on both sides of the stiffening ring from the center line of the ring to the (1) next stiffening ring, (2) to the head line at j depth, (3) to a jacket connection, or (4) to cone-to-cylinder unction, in. P = External design pressure, psi. t = Minimum required wall thickness of shell, in. I. Select the type of stiffening ring and determine its cross sectional area A II. Assume the required number of rings and distribute them equally between jacketed section, cone-to-shell junction, or head line at % of its depth and determine dimension, L,. 111.Calculate the moment of inertia of the selected ring or the moment of inertia of the ring combined with the shell section (see page 95). IV. The available moment of inertia ofa circumferential stiffening ring shall not be less than determined by one of the following formulas: D02L,(t+A~L)A ~, = Do’L,(t+A]L)A {,= ~ .s 10.9 The value of A shall be determined by the following procedure: 1. Calculate factor B using the formula: “’[*J 2. Enter the applicable material chart (pages 43 -47) at the value of B and move horizontally to the curve of design temperature. When the value of B is less than 2500, A can be calculated by the formula: A = 2B/E. 3. From the intersection point move vertically tothebottom of the chart andreadthe value of A. 4. Calculate the required moment of inertia using the formulas above. If the moment of inertia of the ring or the ring combined with the shell section is greater than the required moment of inertia, the stiffening of the sheH is satisfactory. Otherwise stiffening ring with larger moment of inertia must be selected, or the number of rings shall be increased. Stiffening ring for jacketed vessel: Code UG-29 (f)
  • 35. 41 E E DATA: S D P= D.= 1 9 L H M T E= M o 1 = 0 p I G X N ,e xs dt e ei r r s5 e . a s g u rn e . p n s i l i o u nd t i sao. t m s 6 d , ht e ehe r l i e fl e . eo t nv gf e ths ra h st n t e og i a e l n n 4n if t O ie n e 5 o i e ft e l m g = n t 2 e e l a l i :p s o s i d 1 a l d a o t t es tr i i r h f S e- i f a l n i f n ng 3 e g A 6 e m p 5 r Fa t 0 u r e 0 e ° o o d l u a ols m t u a sc2 ie t ,f y0i p 0a@05l f , ‘s 0 ( 0 c 0 i0 s h e i t 7 r , p 4 a 3 g n e ) i . t h 5 i o cs 0 k n 0 e se s n h . l f l I A a z = II. U s o h o n6 x 4 g s3 i 4 . . a e - s l . 5n l e /e e 0 n ,3 q cf 1 t . . 2 s s t ii fr f e i ngq i n n g ag n u p b ea o t c wet e -d td e eh ni hp r n e ( e f i a g = 1 e in. s e s Lj d u rf e 9, ) m o oh m i ne o e tn e III. T selected angle: 11.4in. 1. T n : 7 v o a ha F lc t r t uo e r B= 3/4[PDOjct t e 1 i 3f = 3/4 ~5 X 96/(0.5 + 3.03 ~1961 = 2095 2 S t 2 t i v no a B hi c l l . e u e e h 5 a 0 0 n , e A = 2BiE. = 2 X 2095/27,000,000= 0.00015 IV. The required moment of inertia: I [1102L$(r+ A,Q4] , = 14 S m e S t i a S p 962X 196X (0.5+ 3.03/ 196)X 0.00015 = g 97 in ~ = = . . 14 t i r e n q h c o io em ee e de n 9 r ) it ts . im fn 9a a t l7 h l ” e a m u ir n ( i t h s o o i m n o te ns r et t a h ef( nc i t fg ee v l. ne ae h s 1 4 s ” d e l i a 1 ) t d i e q s t a i t f e el n y e d . u f i r f fm e b ns in unt algbg a b st e cT c ke r tl h cn lo g n . us i j u ye s ia o b i d t d t ir te im h u n o i i m n o e ee d rn t t i q o on r a f . a g fe e ~ t 9 i 5 f - cf 9e e l7 c ui l nar t i o ng s . s r o a i n n g i ld s ed
  • 36. 4 2 owl Cacml . 001 0 1 S A S L A THE VALUES OF FACTOR U I F S O REM F U DL E ANU S V O S A S N E X R T SP E R E D L E R E N R U
  • 37. e Uolwj -
  • 38. I I I I n r I I I i z
  • 39. I I 1 I I w II 111111 I # , I l w 8 Pa E 45
  • 40. 46 .. t t 1 I 1 I 1 I I I I 1 I 1 1 I 1 , ,, , I I e Ho13vd . Y-RI] I , I I I I ! 1 I I I I I I I t I 1 I I . u) . ! Ua E
  • 41. 4
  • 42. 48 E P CONSTRUCTION X OF STIFFENING RINGS LOCATION Stiffening rings may be placed on the inside or outside of a vessel. SHAPEOF RINGS T r m i b h o n e ac g t oa a n o y u s let efn rc h t r e s g a i e ro y n r s . CONSTRUCTION I i p r e f u r a i tc l ssae n st t a rce o em p t o is i nt g - s et c ti r of n f i e t e p l b o ou c s n e s i r a t ut hs hs t easa tnr r n un ac hg tr u d r p ae f l th a sl i ds T ar e n. h o o ei n n oe s o i i t d i f f o r u o l h t l i ee l ts ri au n c f vg u a r p a l el uo sc n,a i c h se s h tb a y b e s t u t so e hc s t a i t r j t t t u ich yus o nt vt ase t g Fu o l re e e a li o a fl eme t . g s rt s ee d r oh h h d vr e m a x e i r m o i uo rsm i b uul c ne r d n e et 1 s f 2 si u g l b n t p s o i a a– n e t nc w a t s a h t h r e T n c lh bene l l ig ai i t i . v s ae t r ee td o i t m c f ae l ie h i h d me n n h e m r i b c o o t pu u l he a t T tt s ti f ee ccn hbt nf .i col a i n asu o r mn t ot e ee l i s c o e s e n s a t b u h t t - wo e igd pd e e ltd h a e c r n t e l n e n . n r r a DRAIN AND VENT S b d a t i r f pf i o f d t r i a h m t a d n a on F r t m s iC ao F n e li nt aei r gc n h es o rd i is z n he ne ht aaf l g oa l tv n o hs dh o ae o l s l ae c t i ln t a o ia t nm t a n gr v eh Po r d a n o e h pt c o r aa 3lan l y o f e o t . i eo t b o a l rh1% i t ed noitn e a m m ct e o t i he a l rh i o s f a tc e e t h a dt e s t tf s of c do hrs cd tFi tt ii e gs s u e t e n e s o n A . r e . xh o s m r l u reu m e u pbl pf e lr c t te a d s u t a i h n e s c f o g i o oei Ug G d., u’ e 2 r 9 . 2 . g e e is a f ef e WELDING According to the ASME Code (UG 30): Stiffener rings may be attached “to the shell by continuous or intermittent welding. The total length of intermittent welding on each side of the stiffener ring shall be: 1 f r o i t o n u nt ghl. s r t i s oe n he t, s o an tu c s it hrln cs ue m ff e er ee o d o e h a i d o t v e sh s e fle ; 2 f r o i t o n n t ghsv r e n nh et s e o e o t f l e o h n t i i s r r c i o . s i ld s e h ,t a s c nh e f e o t v e e n sh r c s e e f le . W c h o r e r l o r si o t i e op a nr n o c v e i t di rs h fde e , bin a i t n ag a l b w t s f o s e e n h t t the shell with continuous fillet or seal weld.ASME. Code (UG.30.) o M S p a 1 tf i n 8t f e x a rt rt c x oe o1e i ri ri n . n2 n a lc g g a rn l ar n l 4 1 F E T t X A f t h F iA g u r e x wi M R P LO E U N T 1 G 3 Il Sf D % E : I S ? x I i R II NN S G 2 l Sf D 4wE iB g o lg e l ” 6 c o l6 e l ” g c u r e te l . t r ” te l . tr “ w t l h e e s g b - n l esl ti a d t e o h m os at he fl t o l s l e1 hio w i eh t z sl e l a n l se t i o c k w n o es sta s sia t f e jlf f le o n l hie r r n v h e e tt e . i d d f e n/ g
  • 43. 49 CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED T U T C ~“ F V t s c ih t a n r r dgt i i ae a f, l se tr h e uih nc mk nb ea d vs aeo s i h w i sf t s s c t e s d c h bh a d ree a v t i e a e c oc s p w e td d i n e cn ehse o Ait h g S n e s l o nr d a m t h e o S o e V dc D tI e i i 1 I ,o i nI i ,o v s n . 1 30 0 “ 40 50 2 60 70 ” 090 100 110 120 130140 80 150 160170 180 190200 SPHERICAL, ELLIPSOIDAL, FLANGED AND DISHED HEADS c s (Specified yield strength 30,000 to 38,000 p i n s l u i i v , e ) T f t r i e h hnu hi e o r d Dk aed t e Res2 rs m t inc n . aet th vh e a , a. r hr q t i 1 ee n c dE : o R 3 M v e o r t t t i e cm ,ap .lle lr4 yi t u nro oe i e za ovr n, tt a ele nl y v f e a M h o r . a I t R D. = R = F F F e q h u t i e ir c e k a n e h i d h e m i so ph h e er i i c a a n d t r l r 2 e l l o i h:p s 0 o i . d a1 a9 e r f l a a od n ih g n s e r i ha t d = Outside diameter of the head, in. sd s , n . hs i s d i , i d e n e s a u , . l dx D s 0 n edd hsr rs a i,o RmW=Do u n n s c d i dd e w e i ,
  • 44. 50 CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED TO FULL VACUUM 323. 525. 5m. 502 475. 475 a m 6a Qo. e a 37s 375 35a 350. s 225 3m. 2m. 27s 27s. Zm. m 225 2Z-3. 2ca a 175 r?s. Isa (5a 1= 123. Im Ice. -Q5 L !Ea I D ! 5 14 l Isa 1 3 laa 1 2 I la , Ioa I m 90. m. m 70. n). 30. a 3a 30. Q. a 2a m m. m. la 3 d 5 67*9 2 1. 3 * 5 C Y L I N DS R I C A L E H ( S facing page f 0 7 a o ,.. L e xe p l a o e a t i o n ) n r !0. L
  • 45. 51 CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED TO FULL VACUUM 525” 10 Is ,Xl .25 .32 .sS .4 .5s .50 .% .(M .05 .70 75 .s0 .03 .90 .95 !.00 S5 Soo. 415 492. 441 -Q5 45. -QO. -no. 3n 3T5 330. X0. 4?5. 330. 325 325 o ~. n 2 X 7 ’ 5 . 2?s ?3a —’2EQ. 2?5. 2ZS ma 290. ITS. 17S ,3. Isa 125 !25 ICo. .10 . 15 .20 .2s .= ,35 .Q .65 .542 .55 .m .63 .m .75 .m .55 .90 .s5 ICC.. ,.m t = C Y L I N DS R I H A L E C ( S p y e T f 1 E 2 M M 4 M 5 E 6 M 7 M t t = = L = L e t o 1 D i t 2 T g 3 T d l p T l h v h c h v ir e e e d t n 3 , g d t0 3 0 l 8p h, 0 n i L 0 0 l 0u oi 0 i s c s v ,e P J “ B o H Y D R O C A P R L P J “ g S ia o ) r i e s h u h i o i rdce e k d l e s l s : q nt h e n n c o t ( h wf e p a. e ar a r v i g on a e c t r t L h l ) u t e e g o or i z t oc n t u . ee pl ry ev s e e n ot si n g v ra l r D . e o r t t t i e c m a p lle l r y ti u ro e n v a e o or i z a ov rn t Da e e n y o . l l a /d d t n a h t a bt a e o . o raD vh t l eo u t e / e v r f t o or i z t oc n t D.a e l r v u l y v o e e o r dt i v c r a . lt e l v ey o a hn l d du e e a o w n t a f o s ih e ln l f , . oe v hss e eh s c e asea l l e o r o l n r e, o l n e l h os e w t g t s t f t t i ka t h g f s e t att nw !c e oh t ieg h ne n e o e hte t a o ths d nf ei e t a .n e p n l u o s hrs h r a i u e ni s r g e n o sn de t , . r d e i ab s t et a a t s n t c e s e e a i n f fi e ye n n ti n n g h e t e a . w k nj tw rc i on g i f s ht t c a r n t. con es tti m he f e tf r e hsnf ti nan h n o e eh f i r r t i e t eg o i thirdl of t n h n u d ee h s e l t n e h d ie p , . v n bs h C o p y r i g c s i i tf L i pe s gg a e i n s t N a A s C ee. , do M dnC wd FE h V e aTe a h ri ” c d s k n es e . SA d ... e n d RO BC O EN S S 5 IM N 1G , p 2 9a 5 N o 5 7 , y7 6 1 . . . m Ap p , i t f . r.i P o r daVe c H h s s ueeo H s Yeie D g R nO d,C ” .n l p . . , e A se D s r a l A N o v 1 ep 2 m 9 b 6 7 r e 5 6 . . h t e d
  • 46. 52 D T WIND T LOAD The computationof wind load is based on Standard ANSIiASCE7-93, approved 1994. The basic wind speed shall be taken from the map on the following page. The basic wind speed is 80 mph. in Hawaii and 95 mph. in Puerto Rico. The minimum design wind pressure shall be not less than 10 lb.hq. ft. When records and experience indicates that the wind speeds are higher than those reflected in the map, the higher values of wind speed shall be applied. The wind pressureon the projected area of a cylindrical tower shall be calculated by the following formula. F=qz G CjA~ (Table 4) ANSI/ASCE 7-93 STANDARD (References made to the tables of this standard) Projected area of tower, sq. ft. = @x H) Shape factor = 0.8 for cylindrical tower (Table 12) Gust response factor = (G~& GZ)* When the tower located: in urban, suburban areas, Exposure B; in open terrain with scattered obstruction, Exposure C; in flat. unobstructed areas, Exposure D. (Table 8) = Velocity pressure, 0.00256 K, (1~2 IESIGN WIND ‘ R E Sl S m projected a o t U R kb , E I I *See tables below for values of q and for combined values of Gh, G,& K, Wind speed, mph. Importance factor, 1.0 (structures that . represent low hazard to human life in event of failure). Velocity Pressure Exposure Coefficient* Exposures B, C & D (Table 6) VELOCITY PRESSURE, q Basic wind speed, mph, Y Velocity Pressure p 0.00256 V2,q 70 13 80 17 90 100 110 120 130 21 26 31 37 44
  • 47. 53 DESIGN OF TALL TOWERS WIND LOAD (Continue~ COEFFICIENT G (Gust r Abo?eE~~~~d, l. i 0-15 20 40 60 80 100 140 200 300 500 f EXPOSUREB 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.9 c w E EXPOSUREC 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.0 2.3 The area of caged ladder maybe approximated platform 8 sq. Il. C EXPOSURED 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 as 1 sq. ft. per lineal il. Area of Users of vessels usually specifi for manufacturers the wind pressure without reference to the height zones or map areas. For example: 30 lb. per sq. fl. This specified pressure shall be considered to be uniform on the whole vessel. The total wind pressure on a tower is the product of the unit pressure and the projected area ofthetower. With good arrangement of the equipment the exposed area of the wind can be reduced considerably. For example, by locating the ladder 90 degrees from the vapor line. EXAMPLE: Determine the wind load, F DESIGN DATA: t w b v d s V D vessel height, H Diameter of tower, D Height of the tower, H The tower located in flat, unobstructed area, exposure = 1 = = = = . . m 6 fi~ 80 ft. 6 ft. 80 ft. D The wind load, F=q x G x (9.8xA qf t r a = psf ob lm 2 e G from table = 1.8 Shape factor = 0.8 Area, A = DH = 6 x 80 = 480 sq. ft. F =26X 1.8X 0.8X 480= 17,971 Ibs. 6
  • 48. W MAP S (miles per hour) . r-v — (q 90 i u j----- --- i i ---- =- ~-i_.. _.T‘-.’ “r i---- m . .. . .. . ... ... my ,-—---- — -/ ‘&—— , ~ A , I L A ‘ S K ’, A i .- kl 2
  • 49. . M W S (miles per hour) NOTES:1 V 2 3 4 5 6 a a f a l s ts u r ap3 e t -a.e m g i e e fr ed o o c p ua to3 t n s ea ud s r s r no r c y e s t s bl e l x s v o . a Ca e g oe i w a a i n r ono b au b . ia l n i0 t y 2 p t0 h l f . L i i n t n br peeo l tsa t. c iri p o ei an ec t c n oe pu t da b l e s . e w a w o n n e d r s C a t u o w s i hc osp o in m e n n e on f tueo Ai g ns la i uda s v n i s k i t i . n o t u ee d a d r r no i o s s e f W s f iH p i a en fw Pe . dRu dn9 er ii r s 0 td r o h o s 5 . 8 a o a i i m o p c W l h o eo e c ce r o nr h. r d r 5 id la 0 cg is-a rhnt i see b uah d s a ed e, l r t i a e i ws p y e hn er r s W s m ip a b s n b sc e . u d nd e cs y t te ad w s n t et e nc nh n r l en e a ds o et a o b m e o aa n o e i l a n o e i t t e
  • 50. 56 D T WIND T LOAD l a i a o l tm e a eb d to a s h s e ASA n e d n r n d tt s a o A58.1-1955.This d d d a rn Computationof w b b s s o u l ti e u s tic e oa lo f t oldc d r n e e e n i t rg di n s s e m o n u s e standardis o T t w m T a t p o t ri h f h a 3 s f l e ua d r g te v r f o tte 0 U v u l no e h i t d t a e n s e b o . Sn i s aa p hc a e i p g n e eg n . oe te h r b a hg e b t i lw l evo r i h eew s v n s au he r oe e a s o g b u rhf o t o p e f s d i i g s t i r n d b i t c m a t s ea d e a h p y e . W C P H E SR I l R I E I I 20 E p S N S T U H R O ER EH Z OqN T E L W H D I w N A OC S QSO IU SO C T A N * G U L R R T R E A N R E A G H M AT R A E A P S 2 3 3 4 4 o 5 5 0 5 0 2 2 0 5 . de o vu s o 0 5 30 to 49 I 25 I 30 I 40 I 45 I 50 I 55 I 60 [ 50 to 99 100 to 499 I 30 I 40 I 45 I 55 I 60 I 70 I 75 I EXAMPLE F t T a v m I I F w w i p rih n P e fs nd sm eur d r a e o ie i h n s tt s o e r a 3 Ir t e k m t t h h c y p e z e z hi l hfi w p . ene i dO ekr s d aw h o oie tm wn , p c ri h mh s n ss n e p l e l a t i h ia e 0e a t d w rai p . rnhe e f s v n a au he r o e i s io o u r n r h ah i s p s r d z s a g t o g 3e nh he 2t s l f n o3g t r 4 h fn 3t o l n e a e ts s f n b 0 .q t 5 p e pe s m f t 0b oe 9 q . t 0 . . r r . . . . l i to d t o i v c wa a l e el h sur a ee s ls p f lh l i a ee a td c t .p t h y o 6 n r h r s b m u l b i t e 0 ri ie d s n s f z uf d r o rb 1 n an n 1 e l lp ssn f l r b e s 5p q e tc 8 t .i v e . i e w e e i t e e d r I m e q a u i a p na m t e f tn tta st c t r y h o i eh i ae f a a cc ct t o r r d o ur wn ng e f l c . lo )l ( B o i t 0 y U e s m d v t iieo se a rc bs r tl s eeh a h w n t i v8 de ro s5 c sr l e o p n i a l . o sv e e s s rss u pe sf elml ac nl ui fo aft c ty u rp e r rri hs w s in rs t e h d re o u a f s y w e u F e r t t e h n ez c h i oo emg a o h e r et ae e x a a3 o m p p .s l f r Tb : e q h t0 n s r ls p p e p c r i s f sb he ou n r st eibl d e l r oei t d f w o v or he m o s e i c d a s u n e h e l sn ee Relationbetweenwindpressureand windvelocitywhenthe horizontalcrosssection is circular,is givenby the formula: w Pw= 0.0025 X VW* E W X A M P h = we Vw = w P L p v r i l e pe s s n f W u b dr s e e i ml o n c i p dt qe t y E o 1i m v n e 0 e p d o x pf 0 i e t r s y st u s r e : l a c e r h .x Vwz= 2 p0 0 o2 e r s u5u a r n f o o d p rn ts h u rpe r o j e oc f e dc a y e a n d r p q e t o 5e s e t a r l i a a h s o 3s f i e g g b h r t ot e e e a l e o uf v0 nt ed . Pw= 0 v T t wo h p ti e a s tn s l i o t d r p we r o ohn d r p sr ce e t s i s f u n r o e u et u u nh a e t p r o a j oe t cr t t e W e hg o d w ai e r or f r aet no . g ee hmq edu n t h ep m e p h n o a t o it x f e a o t rw c e ihr b e an do f neu s d cd F e ee ea db l a y o .m o p tc l l a e t , i h n c a i n r x b l r a d 9 d e f g t rvr e l a e o i s p 0 h n o e e r m .
  • 51. M W P 57
  • 52. . 58 D E O S T IT AGO N L W EF L R S WIND LOAD ~ = v= t N O T A T I O N W o ti v w i ht s e suh f l e fa e t l i ht de n i s tt c o E E f f o it c i je no h c iy d n e f t e d s w e l L a ef rv e tm r , . D i f s b t t rs n eu cocc eo s tn s mi df d ee roea a a n i o n H,HIHZ= L o v e noe v g s e te sfs ch e s f il e o r l n s t t M =M a mx o t mm u e a m h s t t be t ( i b f l a n MT =M o h mhe f el i n g ~t t h b t t a , - ~ = r oa v e dei a s i s un e s l f , n R =M vt o m ra a e lat s e cu rs t t i e r u fs l e a o s p a =S s v =T s olh te ab rl , . f =R e dt q h ui c ci o kr r n e r e d c sl ,iu od ne e x os i n h, T J_ - t=R2nSE P.D, h,) = = = = r ~z hr(V- - D2 E G Y~ I I 1 D] i X D t e L S U S T M h2 HI i A tt ! :) x > 4 ’ D, k 4 u z % P ~l 2 5 1 II = ~ - e r 6 o X 2n = 1 08 2 8 6 , 0 1 7 e r 3,960 Xn78 = 308,880 o 9 1 0 l M,4 6 f l 78 , 0 0 a a hn n t t gi o te e mnn lt t e = . 5 X X4 X = ~ ‘ <0 s !‘ - J ’ A ”M P L E : i : N D1 =v 3 ft. 6ein. H n= 100ft. Oin. hT = 4 ft. Oin. a f 4 o = r pm s f D e tt e r m m ioh n m e n e e nd w i t = H12= 50 f Oi t n . . V X h, = M Pw x D] X H = 0X 5 ,= 5 5 2 0 5 V e 30 x s 3.5 xs 100 e = 1 l 9 L a 3 xd 9 l d f e i= r2 t = , 4 = 81 . 4. 4 4 n0 2 x 9 = 24 3 Platform 30 x 8 lin. ft. = F o V = 1 3 M , 6 6 9 82 = T o t a l I g M oa t m b et o at l ntt n h g o t e m nn f t I i e g PwD, h=) = . 5 k = M – hT (V – 0 f ~ - ! ‘ O - I z w X5 i t = p X 44 i t = t v = to e – 0 1 3 , = H1[2= 28’-0” o 3 cX 4 p e 30cX 3 ’ o o t bm a e – 4 t e w P L E : ” = e ’= n - : = 0 ’= p0 s” rm m ioih n m e n e e nd t = HI + (HZ12) 78’-0” = Pw X D X H = V X h = M MT = M – h, M = 4 v = 4 E G t 6 X 6 9 – 2 ( , 1 1 3 0 X, 3 0 X 3 8X 4 0= 6 . 3 5 8 4 – 0 6 . f l ’ ’ m . S- tE X A EFM CP O M L S = “ l L EO B I O N P R A 6 A D E D
  • 53. 59 D WEIGHT E O S T OF IT THE AO G NWL EF L R S VESSEL The weight of the vessel results compressive stress only when eccentricity does not t h t e U ih sh s es u s e a f le l t exist and the resultant force c o i wn c ia i d o et xsv c o m p d et st s wi o ei i h i s i gg a oh i e n i t c a ns t t o o l l i sn t g . r u n n e n i f c o nn r d T w A E es r 1 2 3 4 5 6 7 8 9 1 1 1 w e B O r l a hf u lt l v a l t c eero d ni ce t a o h c e wt i i i g on . hnci h t tw l cu e dt h i e , o h C T w e c e tt i si g o i hn h t ut 1t w e w i ie e w sr e a i g n h ci tw h s t. l w where Ct w e d h ii o o cu e dt h i e , o h c s oc e t .d il i o tn ni e n ts e. t r c o m p hs r e ds st rit ev we u es t g = sao fn h s w l o o l ef oe sg h h e e t f : E q u i p m e n t s : 1 1 1 1 1 1 i n s u 3 l a t i o. f i r e p4 r o o f i .n p l a 5t f o r. l a 6 d d e . p i 7 p i n . m i s c e 8 l l a n e o .u u s go h f g s d h d et : h e 1r e ie e sr c s oc e t .d il i o tn ni e n r a y . s p e f r a t qi n u g i i . d 1 v 2 t d oti r ttu ei o m o 1 r y d u s 8g f n g m r g s h . e weight,which includesthe weight of the: r a t i n . g p 1 v 2 t 3 o T g a s h e l . l h e a d . s i n pt e l r w n ao a . lt r e k t s ur p p a o r . yt s i n s r l ai t i n o . n g u s o p e n i n g . s s k i r . t b r a i s n . e g a nr c ih o n. r g a nl 0 c uh o .g r s m i s c e 1 l l a n e o .u s + 6 o t 2 w 9 e i h i . 1t tg % h fh 1 r f t m o e e o o v e ro w e i g hw at t p a l h e t n i bd e a f e t w e l h d i n ge s E T hb h i c h i si b n sg h o h e e t f : n g e v oh e y e t n : S = u s tp r n e i ss st , i W= w o v i a g t s b s h s e ot e h fvotl n si ed dl ee re a t i ro e e u c c n i o n c = c i r c u m s e o sh n oc tee m o f r e k il i e hrli m t e nt e e f a r a d t = t h i o t sk n she hi k es i l f r en l t r , c o s . fv f g eh e r s e a ns f t ee it n rl b v es b g eo i l e n n 3n na s n e l t e g m i a t p e i g g 7
  • 54. 60 D E O S T IT AGO N L W EF L R S V I B RAT I ON A a r e w s t ut i o la d ntw vl vei d b r r Tl a s po i poo t hnr v. ii b ohe o s e f e l t e r s hb l o i sm li li tn a ena pd et c o v e i i b co r ll a t t fs i aa of f t a a i i n u d r e u g r , r e a d n e g l T a l l p o wh a r b c el i oeea mf p d u m t ane pd e i r mm i e s ef sm i e b c h e b o e t r s xh o d u l T s c h h a l r v lm bei ro dd i ti c is i oc t n H s a h s ne dd t i b t o n no a i e nn a o o u s t s s i r a u s a u p a p t l l s l h isu n ep e pr t oe a r v rrt o e ts h n s rt h o n e i l a y d i d i p i b g e F P b i T sec. t r ao e V ri o O nf , l i e c o O T D H = O = L g = 3 = T = T = W = W t v w w i v D = 3 H = 1 f Oi g t = 3 = 0 = 1 e = i o f Oi . f t2 . 4 l l p c e e A S ~ z ( D )F T d =0 . A D : e tt p oe v 1 t 2n 5 0 t n 0 l s. e c2 7‘ o ~5 b4 0 b o a td i i nt n r n = = f X n T a R L A T I r O ~ . a l d M P L 8 N ud ti o asv m ef ed s t e s e et i r l f , o v e ni e n g ss t f sku h d i i f l n t g t c l e r f p s2 s q tea e c c e cr l e.e r d. t , i o . u a 2 a h io s c ak t kn e i isa s h r s b fn t e t e s olh ts b a6 e p ral e , . g , e oe t ilo gw h eb t r f , . oe t i o go h wh oele te i p f og r h r t t f b E G U T= id o N w M A l i l mo we am rb x P u b r a s t i o e nf , M a o V i v w R . , n , e . 1 f , E e r a cmm ih an a u n ila e l w u d mb a t x l e o m a ir b ir a o t i o f n d . . . . 2 ’ ’ ’ ( $ z =j e = ‘ “ ’ . . g o x 1 = ~~ S i n 0 e 0 1440 X 32.2 “ v c i ht d r u ea o tatx ei b n lv oi w a a t i b r b l e e r re C nE cVee i : s b o eV a , e t P ri . r o: Vn F e r . t ei “ looe n e h se c o n t d sc e sa f sPl S rs1 a e e M p9 l A u
  • 55. 61 DESIGN OF TALL TOWERS S LOAD (EARTHQUAKE) The loading condition of a tower under seismic forces is similar to that of a cantilever beam when the load increases uniformly toward the free end. The design method below is based on Uniform Building Code, 1991 (UBC). FORMULAS MOMENT SHEAR F~~ &l = [F, x H + (V – F,) x (2H/3)] 4 4 1 t H13 = Z[c ~ v— x V— IWX= [F, x Rw for X > H13 B S T S a h T b t b t s ‘ eL for X S ‘is MX = [F, X X + (V -~j X (X – H/3)] H 4 X se ae r s ah h t i t eh oo e h est zre os sn e at s l a m e i s a i r a i h l o a t ah o T t swr i ee a h n r fg au a lad eat ir t n e le o p . o h th a s o dh h w due to thata r t p e e a e fg e loadingar i e m are shown in Fig. (a) and (b). A portion Ft of total i o D s a i m d a hi i g c n r s g a e of in V s a m r ito becappliedeat o r i z m t o assumed is l the top of the tower. The remainder of the base shear is distributed throughout the length of the tower, including the top. O v e r t Mu r on i m n g e n t The overturning moment at any level is the algebraic sum of the moments of all the forces above that level. NOTATION C = Numericalcoefficient = (need not exceed 2.75) 1 7?/3 Outside diameterof vessel ft ;=NumeticalcOef ficient ‘:””: = Efficiencyof weldedjoints = F, = Total horizontal seismic force at top of the vessel, lb. determined from the following formula: (b)Seismic Diagram Shear BaseS h e a r F, = 0.07 TV (F,,need not exceed 0.25V) = O, for T <0.7 H = Length of vessel includingskirt, ft.
  • 56. 62 D E O S T IT A O G NWL EF L R S SEISMIC LOAD (EARTHQUAKE) NOTATION I = Occupancy importance coefficient (use 1.0 for vessels) M = Maximum moment (at the base), ft-lb. MX= Moment at distance X, ft-lb. R =Meanradius of vessel, in. Rw = Numerical coefficient (use 4 for vessels) S =Sitecoefficient -0 r (a) A rock-like material haracterized sheu-wave elocity c bya v greater han2,500feetper t second byothersuitable or meansof classification. (b)Stiffor densesoilcondition herethesoildepthis lessthan200feet.S = 1 w t s depthexceeds 00feet. o h 2 A soilprofilewithdenseor stiffsoilconditions, s = 1.2 A soilprofile feetor morein depthandcontaining orethan20feetofsoftto 40 m medium stiffclaybutn~ morethan40feetof softclay.S = A soilprofile containing orethan40 feetof softclay.S = 2.0 m x H L. L for soil characteristics Asoilprofilewitheither: St = Allowable tensile stress of vessel plate material, psi T = Fundamental period of vibration, seconds = c, X t = Required corroded vessel thickness, in. = IV 12 M T R2Sr E or 12 M,. TR2Sr E = Total seismic shear at base, lb. W = Total weight of tower, lb. Distance from top tangent line to the level under consideration, ft. Seismic zone factor, 0.15 for zone 2A, 0.075 for zone 1, 0.3 for zone 3, 0.2 for zone 2B, 0.4 for zone 4, (see map on the following pages for zoning) i
  • 57. 63 D E O S T IT AGO N L W EF SEISMIC LOAD (EARTHQUAKE) EXAMPLE‘ Given: Seismiczone: 2B D = 37.5 in. = 3.125 ft. z = 0.2 X = 96 ft. O in. H = 100 ft., O in. W = 35,400 lb. Determine: The overturning moment due to earthquake at the base and at a distance X from top tangent line First, fundamental period of vibration shall be calculated T = C, Xf13/4 and I = 1, c = 0.035X 1003/4= 1.1 sec. s = 1.5 1.25S T213 = ZIC Xw v= Rw Rw = 4, 1.25 X 1.5 1.1213 = = 1.76 <2.75 0.2 X 1 X 1.76 X 35,400 = 3115 lb. 4 ~,= 0.07 TV= 0.07 X 1.1 X 3115 = 2401b. M = [EH + (V - F’t)(2H/3) ] = =[240 X 100 + 3115- 240)(2X 100/3)]= 216,625ft. lb. x> H — 3 M = [Rx = thus + (v– F) (X – H/3)] = = [240X 100+ 3115- 240) (96 - 100/3)]= 205,125ft. -lb. L R S
  • 58. 64 SEISMIC ZONE MAP OF THE UNITED STATES
  • 59. 66 D E O S T IT ECCENTRIC Towersand their i a a l m s f a t o o t w n AGO N L W EF L R S LOAD e t qe u r a n p ams lse u rn m a m ale t lret iyvc a u r h n i u y t r o e l t tx t whni e t h i v dg s s uh sec et s m pfe sr e l os s s E n vq e u l is p y o us e h o e t t ri p tt ta vc ho te h s od s c ohc e s lu an sn y e m e d esi t sr ti ec o a t lb u t i e u te i a du m n r i d a t td w i u e n a rh i g i gb n soh es u t t T l d ui ne sh yn m m ie r r ri c aa e e e n d r t n s g sa t. s s e e m q nu a p p t m i ef nl p t e n e b n s n g g b s t cb t ye u dnh , d i a l o p ,m n i e adl e e e er e b seh s r ee t q s u a ai d ap v dm y eyi rnt b o e ns n ht l d r e ie s on e sgl x e e d t t ti e a r s u ro s i e ol i n o m m d i r c s a d . F e M O M O ES R M NT U T R L A S R E Q U I T E H IS C S K N c 5 1 * w ; R s * -P t w N O T A T I O N = E c c e t n dt r i i f cs i t htt t y ra, a ot c c e x e n h w o o m n e e c lc e o f n t a it c r d , . = E f f o iw c jie e o ln ic d y n e t f d s . = M o e m lc e e lon t t a i t f bd o c f n r c , r oa v e dei a s i s un e s l f , n . = M = S v t o m a e o t a e b c s i st a n tp uf d, r ai e r n ra l s u e e l r e c er lr f o i = T h io vc ke nxs ec ss lo sua d l lio i , ns wg a o = E c lc e on t a ib c l r d , . E i e R t w W t t at v 4 ft. O m: n = e = 15 in, i . = 0 l 0 = 1 h i hm tee o o r k e s o ha n el i u 2 — e G nR 2t ‘ I 1 We t =R z n SE ~= 1 M= X A M P L E : Determinemoment,M, and stress, S. M o M m Wee= 1000 Xt 4 = , = n n 2 10 W I = b ~ f l 5 . 12 x 1000 x 4 J = 2 e 0_ . = 2 p 3 X 1 .X 0 1 5, t 4 2 7 2 r e c r e c l a es en o mn r a ei sm d b e h u mate m sa l r i h n n t t o c h s n , c g a l nl o t c e n t ar f il c s t d .
  • 60. 67 Design of Tall Towers ELASTIC A tower u 1 2 I t t s e E s i STABILITY an c x d m pi em e f sr i ti l oaw n b o r a s a iw oy ci nl y s n t u a b i e i a e a o s s l B b u o t k w l c i. h nh ( go Eb l f s ec ek l e i n r g ) v ye s uu e l l B l b o u cc k . l a i y ln g t h i n v w e a ls l twn td e hh li o he t k s n i e h e ht s e o n lf e eos - l a s s ( e s cs n l s e h t e i n r s h l i d bd oi u e e cc ” sko a a ic a aln l g l n u t o a um l ) u c y t er i r a t e h s t q a d u asi h c f a a o uti wl s u oh ehe T oes o s lf r ee h e luu on t d sen ie a v f h s e e v r o o . t hs i g n f i f ai i tc c a net t s i o u sl r t t a Tin e l g i trf h m n u e l s o eo i s a t i r hn b n f i o y i. a v t g l s a a a b@ i iil t i c H e a h n d e ei n v bn W o ia p N d s w n o m y a t s t r t y b o e slk , o e e l n l e o m t ev n ewt h ss ah s p i e e uc ] af hr s i elp t y o f i r r m o e u h ( p et r s rr r d o u p d p o o w r n t c s oa , m cer or n s sa i a) s e ly r i e a dsf g e a u oe i c rs ns b m b a d t ef b n k ls c l s o p s ao e n c g l i e ty t d d ii. n f na el t n rr e ie of thes tower more te y L f u i f s c r sa h i g d e i effectively than circumferential stiffeners. If the rings are not continuous around the shell, its stiffening effect shall be calculated with the restrictions outlined i t C U oh( C d- c e2 e ) E i R G t Given: = v 1 i e = 0 i Ay = 1 sq. in. dy = 2 i 9 X . A M P L E o m e e n D : e n t t e a r I 8m l .c i oh n w e pas r b e (t ls s r i v ee S . n , 5 x 0 f5 0 1 . , , 0 5 0 00 0 0 , 0 0 0 2 2 x . 1 = = 2 0 p , s = 1 R n 4 . D e t t e a r l m l c i oh n w e p s r b e (tle u s r i vs ee S o m a s e s e t n ir ef rfi e n e r n g s L o n g s t t u id if n f a l i i n u t s o e h e d s tn , s :1 = ’ 5~ : ’ 0 0 0 = tx= t = 0.25 in. 1 — 1= , 5 0 0 , 0 0 0 ~ x 0 0 =. 2 . 2P 2 .25 4 ‘y = t + 24 1 8 = 0 + 0 . = 0 . 2 . 0 5 2 4 9 R S e f eW r ah C e o ei W l c as No e n . w n, M T . S, d . k h e C . y g l ie n h d n M e : N t n a r t r T o n h : t i lEl u E l m S s Ux s s Itg, nb p 2 ila. 1 . v5l l. n n u 9 . l 3 . . 3 , 5 . s 8 8 is S93 r
  • 61. 68 1 D E O S T IT AGO N L W EF L R S D rowers s r m hb d o e u d i l e n d n s t g m ele d e i h op tr 100afeet h height. s f t 6 o c n c o e e ne of e f lh e t c t t wi uol n m d e ih b ce n a o lae c d u ld t a s y t ee i df r h n m o a b f o f l o o c am n lbtd y le e d a e r m r a i e v ” d i A F M O N R O T M A U T I L O A N S AM = M D1 = W =M E a dx e i f ( m t e t c it o a o np l u m i h o ti t d w o i t n wi he l e f t e t t ri h s u f a o o e l ua p l t u c s i t yf , d s i s L e v n e i g s = scs lf e u l id , er o n t h f k H = R t m o o 3 i m n f e e cnnr y ,h t o is n t l i r . ( R>lot) h w e n =M r ea t td a oi o i hu w n s n r e f R = T h i o c k i kn e i s s n s r t f , t Pw = wind p r ep s s u rs e , E G i v 6i = 30,000,000 = 48 ft., Oin. = 2 f E H = ~ = 30 p = 1 i = 0 I R t T f m 4 .i e t D n A M P L e : t t e m r a dx he n i f e lA e m i m n . , . AM= 3 X n ) ohn td t f ia r d h e f E c e m o u t i n : I PJI,H (12H)3 8EI 30 f 2.5 x 48 (12 X 48)3 x s n = 8 x 3 20 . , 0x 0 0 M, 0 x 0 2 . ‘ 1 x 3 0 0 1 n 2 5 . a x h l i l d m e w e6lai meb n l t1e c f o hn e ee o u f c i o h p 0 48 X 6 n 8 8 . 8= ~ ’ o . = 2 ( i ) r . ” a S t ia dn e htf cdl ue ec a t e x l ol on c n e o it c e s a t i s f a c t o r y . t d ih e , . t s i = 1 . g r h0 i 31 . 31 . f : t e t s h i i o tc ns k ein k e g e d m e it i d s t s , h o s A m e f ct a h c du e l fa l twei c t tg t h h n o,e t kt n n i e n eh c sw l oo d n r i o i c of l oo l a d o n r e s g t b i S Sn Tv . “ e v SC e n M m y e b “ u nr a 6rh t c T u t8 D te i f w l. gA a O t , 1a h 9 . Cte H y d r oP c r a or k o n s i n g c e s b
  • 62. 69 D E O S T IT AGO N L W EF L R S COMBINATION OF STRESSES T s t ir h n e bsd t s up e r c e evh i d o s u cyso rel shallbe investigatedin s s d e l aiy b ei dn d g combinationto establishthe governingstresses. C o m b o n a l i io n o a nr i w t ( e t v e sh s e le : t a h d o u dn a pressure and weight of l o f qi l a t de k e r r) n , a Stress Condition A w + S + S – S i d t d t d t ns d w t r w e t r i p e t r w ee Ae l e — Sd o es + o S. . eh — S t o i a rt d ui s s n un s e s st r u si s g C o m b o n a l i io n o a n r i w t ( e t v e sh s e le : S A windward side t + Stress due to wind – Stress due to ext. press. – Stress due to weight T s e d t .d t d t s t t t e rw ri rw t a h dqo u d a pr o f l e x a tk w i a r td d e u is s n e p e un s r e s t se ee u si sg eh de e r e o os o a ) w , s e u n ir e r s n a o l t r s s Condition e At leeward side – Stress due to wind – Stress due to ext. press. – Stress due to weight p o s s h i i t e t i g e a e ot sn ts e n so h a n i t ecid g ve p nor T e s s s i e d v n n i eg d o n m e t u m o t a s t ti io hne w m r ds is f tce e as t o t nch eo s m ip r ir oge on sv i e or r n h e e e s I i a t t g r B r so e e T s e s ts w u hm e et a s a d a i r h h bw d o e e u sf ie e rl a t e r . tn l h tqd o un a o da e c d o u l ts a n u o t u s h n d k s i m c e r t o g d n oto e e dha r et r h r q uh a i kr e a iw e i n l w o d ic h sn td c i ra b n eu c cs e ns t r b ih sc u y ta y m wla rt i l siz g s s e d i m s f u wl rto e i a or g t l nh m o u d a a r e d i n q k . t s r h b h s a s l a c tu sl fl e c a e a l tl lee odo c wa it t n o lh i e 1. s dr t e h : At the bottom of the tower 2. 3. o n g e t At the joint of the skirt to the head A t A c 4 T 1. s t b oh h o ad f r u er h t s t s hs se b e h s o ra a e tm l f i o n l l c l o d n w r e m x i ee o h d r r o i c i n mi ga o n e d s t r ei n. s g p r e ir a n . t ig o i l ii n t n i g e o n D D D U s v tn d h di f c ef o en s rr t ie w n i t eo n t h s v , g a e d e t o i e ch eo nt s en qte u e ln h s s f e c o r n d e i a t s d o s l rf B e e r d e e inue d r.r e e sid c ,i ns m g a o n n t a i i n f s s s o t o t i t t ie n u s i n noe otd e le x er s p t n re ae r l n s a u l r e . s t r s r a n a ol t a n td m b tn l t n fe e 2 3 F H ue ut u o ht t t t s e oj eha m o e d i lo en l t h n ao . t m eh t e is ot c t ekf rn ee s rs s i g v h nr g d t i y zt i r ohn et g nt g a et s r o u w vn e a f l r rl o i eab od r u h l s oa o xhk i ,tt m h has e e m applied. r s r u been o s s y ns
  • 63. 70 C O S O (cont.) The b t T t e mn o d im w e ig d n i e c r ne e a bs di on s toht t d t n u t f t or t g o tm o h e om t ot t w p h e t l h r hui ca,c a k sb n d e el ee s c a r c e oa r sd e e n d g l y . t a s s c n o i A aa F b i B aln gc oe u n va de t n f i i te e i t d d h t f a oot n r ce w e r e d n i s n s d o t t o f o wh wa h p o e f i e rh r ct i caa hd i n nq su sa t e s . c e t i r k e e * 1 1 6 . .1 1 (. 1 9 . 1 ) . 1 1 . 1 2 . 3 . 0 0.5 0 m 1 . 0 3 . 1 1 2 .2 . 2 . 2 8. 2 9 . 3 0 . 3 2 . 3 4 . 4 6 . 4 8 . 5 0 . 0.53 0.51 0.50 0.48 0.46 0.44 0.42 0.41 ().39 ().37 ()<35 0.33 0.32 m T A S t f w d l p x H t E X A M A V A BA OL F L UA E mC , S T E O F R t i c i r i n F i f fa r e = x l o n g h ct u d d eti rin e an el pu sre ier s sn e s a o u l an is t t o h o r c u m f se r e o t rhe a e t san s h t n i o l r e wl h t e h i afi r c e ek q , u f pt or e i r a sn v saa t ur l te ae b b s el s in h o dt o i t r n e r i r l fe s o T nr A a u d o fb s . a lci c f n t t, o a d mm b e o g i u X h nn r s t ot tr tw a oh nnw g m w e e tt nh n ht h i ii ce c cn k n hl l o ii pt h a i nt p o e t e r e a s t is r s auf atr cr etl o e r w s r dn s a l t y i ih s s u r e . H x m tp = T r e t q h u i f i ci r kn ee t deroe se r s s n s a r u l r n p ( TH e i o n s oi on n p ) . t = T r e tq h u i f i w r k pee r deoae t ss n s o ur h r cw n i s b d h t e e = s j t o ih i e n l n tl o , . 2 i .3 . = 63 n, 4 W = 4 . P L= 0 E : i . r = 0n k = 100 ft. F T rm = 0 a ob X .= lmH = 0.43 X 1 3= 43 f m e a n 4 d 0 z 5 g b 5 E Q Q x 1 R b a t 0 . 1 F B i oa p tt l h i i ar c ok t qa f tu e si s r e n e e h d o ( t + tt t t rt h m/w r c ek q o i 2 n e si s r ) u o c o n sh i e e i t ee d h h d r g t . g t e d e .
  • 64. 71 DESIGN OF TALL TOWERS EXAMPLE - A Required thicknessof cylindricalshell under internal pressureand wind load. ~,- ~,, D ~ A f dt s = 4 f Oi l e tt n o g 8 .wt . h e o f r i f s nt b a t nt . b o. e o t t r ah c sm h t et hT = 4 f O i d h t s ej h oa e i d l n l o t P m= 2 p i n p5t rse e r s n 0 s a i u l r e Pw = 3 p w p ri s e s n s 0 uf dr e R = 1 i i r n as v d e i2 s . u s s e f l o n i d e = 1 p 3s v7 t o r S 2 e C0 s i u s 8 sa 5 l e f A s I m a a t2 e t 0e m 0 a e l r ” a t t u r e r i p F s o l h t e a b a l r . =T v N a l l f o c wo ar n o oc se i o n . r o r H : o “ v d II : o I . = * i : 4 o -e m z M E C O N I D I G T I NO N S S D = 2 ft. Oin. insidediameterof vessel D1 = 2 ft. 6 in. width of towerwith insulation,etc. e l y en E = 0.85 e f f oi wc i j e no c di r n e i t q m u i fu i c mk en t doe cs r ssnn s t ai rsu dl te orre i hen h i rn p r e e o s r t 1 t g n s go h t e a h n m e PR 250 X 12 3000 ==0.260 i 11,538 = SE – 0.6P = 13,750 X 0.85 – 0.6 x 250 n Minimumrequiredthicknessfor internalpressureconsideringthe strengthof the girthseams: 3,000 PR 250 X 12 =0.128 in. t 3X 0 , + 0 7 . x 25 = 80 . 3 5 5 , 2 4 4 = 2SE + 0.4P = 2 X 1 R e t q h u i f i c rok n ng deo t seu dsd nti w d ra p li ru i neM s l e bi n g oa t u m o d e n s eb r ( e 0 7 .a M h n t _ s PW x D1 X H = v X h] = M 3 M x 2 x 4 = 3 oa t m b es o nt ( h . x ,2 ett =0 86 5 6 0l 8 , f ~ o t ae m = m 04 t 0b 4 0 . . ) MT = M – IIT(V – 0.5 Pw D, h=j= 86,400- 4(3,600 – 0.5 x 30 X 2.5 x 4) = 86,400 – 13,800 = 72,600 ft. lb. = 72,600 x 12 = 871,200in. lb. Requiredthickness: MT t = R T S T F F 8 = 1 x 3 7 x 12 . , 2 1 , 2 8 0 7 0 1 23x 0E , = 2 7 4 , 4 2 = 8080 7 i , . 5 1 5 5 5 0 0 21 3 n 6 r e t q h u i c i ca r k wn ue l s i t s t or e he h l ee td s a c t td n o gh sh t e ht e r o f ae tm m h b g t i w p ri o e s0 n s i .u dr 1 e r n6 5 . i p r no e s 0 ts i u . r r . 1 e n2 8 . T i g h r t et t ah h t i c s cha sk r wn un l s ia s t i ea l c e e T O T0 A. 2 t Ls t 9 r t h o nn gg sih t e u h de e t nf e e a f h o r m o le 3 t h i r a l m i t n h i i 0 m i ku s n m e2 u s ns9 sa c . b h 3 el . to
  • 65. I L D E O S T IT AGO N L W EF L R S EXAMPLE B R w — e t q h u i o icc y k l ens de u d sh rc s i oce al fd l ol o a i r i n n m b i e o t e i o g w h e t r f . . P / l lnn pe t r d e e gr s a sn d ri n w s iu f r a D ED S I G TN A A 3 f Oi i dn t i s a n m i e .d t . ee r t f w di n si . au .ll h e f to i wo ha ne s t s at f l l n D] = 3 fo 6 i r w m o v it p ie p it n gc , . = 0 e f .f o iw c 8e e l e 5 d y a e i s n c md f s E i f s t n b rat t n b a c .h e t ss m e t e h e t t . h o o h t h~ = 4 f Oi d j o i n t . 1 f Oi l 0e t t n o g 0 w .t . h o n e f r = 1 p i n p o r s e r s n s0 a i l r t5 e u e P p r e s s u r e P. = . 1 ; i n s i Qo n - r e a d s u ss d v e i . 8 e f l R . 1 p 3 o v t 7 o Sa 5 Ae m - s a2u t s 8 e e 5 f iC0 s rs l 0 a 2 i 0r s t e m po e r a t u r e . T s o l hI te ab rl , . v 2e s e a e a l :ml il p e t s 1 s a l i c H d : m o e a i e e e cm = C i r c u ’o s f e rt he mn cd e i e h l m f al tn n ( c o a r l r l n o s w o nno c r e d t ) o r e q u i e i a a ‘ ‘ m ‘ m I < . 1 . Minimumrequiredthicknessfor internalpressurec o n st i s d te orr t i hle n o gn gg ih tt e n s o shdi. e a m f 150 X 18 PR 0 i . U 0 2 i pn 3 s l 3 n a . . 2 – 0 .x 1 = 8 . 55 6 0 t = SE – 0.6P = 13,750 X 0 M i t s r n e i t q m u i fu i c mk pnt reoe c e r ssnn st ai sud l t e or te i he n i g c g u h me h i rn e d s o s r r r c n r t o is e h a a e ll m l f . 150 X 18 PR 0 i . 1 n1 ‘ 2 X 1 3X 0 E, + 0 P . x 15 7 80 . 55 4 0 t = — + 0 B . 4 I M = i r n e i t q m u i u i ch m k en ed o s h f r e PD W V P L L i e l a a PW X D, X H o n a d s 30 x s 3.5 x e 100 l x lin. r t 30 f 8 o ft. m d 3 x d9 l e f r Totalshear I M r d = 0.231 i n = 2 X 13,750 X 0.85 – 0.2 x 150 t = BE – 0.2P I sa 150 X 36 oa t m b eh o st n h = dv x h] = 1 = i= 0X5 , 2 X9 2,940 t nX 49 0 V= 13,680 (ett M e J o t a ’ ma e = 55 2O 5 O , 0 0 4 = 4 2 3 , 0 0 6 4 = . 8 144,060 . oa t b m = 692,100f l m b a s l d T m ) MT = M – h~ (V – 0.5 P#,hJ = 1 – 03 X ( Xj 3 3 692,100 – 4 ( 1 X 6 3 2 8 1 M, .X 4 = 6 . 3 5f 8 0 , 52 t 2 8 0 l ) b 7 2 , 2 6 .5 0 8 , . 6 4 6 0 , 2 0 – — t = R2 = SE = – i p X f X l t X l n ac o o oh t F i p r no e w. e r er s e e u r .u r r . 1 e s0 ts s E i 0 n
  • 66. 73 EXAMPLE The preliminary calculation of the required wall thickness shows that at the bottom approximately 0.75 in. plate is required,to withstandthe windload and internal pressure, while at the top the wind load is not factor and for internal pressure(hoop tension) only 0.25 plate r i c rd v is satisfactory.F e c o n o o em i ia a sa l o t i n s sa 4 A : o “m “ N & : 0 , - : o , o u d i ~ p s t lh r i e ca ak v n t ea h re ee o s t o g u h f f e e n t s s i i t t o w e r . T t h i r h e k f n h u eti sro o( e n d o s i r.e p c q e s e i 0 s n o r2 n t r a e t s wl i l sth o c t is a o n od r e ds e a i td ad a io n t f t tr o m p e . 0 oh F t di ~ i h ( n ft i at dnr A ac s X P e7ob a ) l m g e s o t = w . 2 / 3 3 2/ 0 . p X =40 .4 x H =.e4 f 7 4n 0 = t t 6 h c a r u F d r i Ba P o g 7 r a m b fm g t oa , e eu 0q h nn t h i a c l.k ne o e t n ns i n gt e rhdm hs dh e i f a e te t e i s t s e c U 8 sf w m p i il t av g dt s e h s hs os , n a se e r l u n e b e . c t l e o. f r m : ( 0 t .5 h w 2c 8 f i o ct 5u kd f s . e ) i r s t ( 0 t .4 h w 5c 8 f i o ct 0u 3d f s . e ) i kr s t ( 0 t e .3 h w 7c 8 f i o ct 5u 2d f s . e ) i kr s t m T o t a l # : ~ ~ ~ : o b t “ m ~ o : 1 o t - E O I T T G H H TW O F E E R S e b g o e ipl n 3 e e ai s n g g b a n 7 4 n e l 0 x 7 3l 87Skirt 4 8 195 0 9 6 2 B r 4 a i 0 s n7 e 25 9 7 4 n5 r c i6 h o 2n r 0 4A .n o 3 a o1 d1 2 m 5 A .6 nl p c uh0 o 1g r .e n 8 o1 3 2 . 5 t m . 9 3 1 a t o t r .8 e k 0 0 + 6 1 p p a o r yt1 s 1 0 1 l ia t in o n2g s 2 0 S a2 l n i n g9 0 0 4o n I 7n s 5 l a9 t i u 1 9 1 m P l a t f 4 o r 1 1% 8 L a d d e2 r 2 l 0 3i . 1 P 9 i b4 p n g a y, 2 1 0 0 0 ( S 4 h 9 x 3 X 1 2 x 2 H t 0 e b 0 I p wnl T s ur I n s ru O p e + 6 S T T O W t I W’ E C E 3I L O3 N H, T A Gl r el r a a i y t qi s nu g W e c t to 6 2i 3 +E T r O O e ) 8 2 6 2 g g s 8 % 1 9 0 6 1 8 4 y 9960 C E YR p B (CONT.) P T E Test water + Erection Wt. i n 3 T0 S :b 0 1 a . 0 0 0 l 0 d 4 0 0 l . 3l 0 , 0 b b0 0 R WEIGHT:I 36.000 lb. A T L N G A 42,000 lb. 33,000 lb. TOTAL TEST WEIGHT: 75,000 lb. — For weight of water content, see rage 416 0 0 . . , y 0
  • 67. 74 E B( Checkingthe stresseswith the preliminarycalculatedplate thicknesses: Stress in the shellat the bottomhead to shelljoint: P S t lh i 0 ac i k t.n e e s n s 7 P 1 5 3 . X 65 dt t ir n ep tu r s eS s s ~ e=a ou l r e r = n s e = 1 4 x X 6 s sn e o d dt t w r e ui s Rz n t = 1 8 x 3 . 3 1 w = — dt t w r ee u i s g s s h e t= o , 1 x1 0 r c e o c n t d i i ot n n o n i 3 4 w = s=—= p ec ro an t d i i n tn g i o n 1 xm0 1 C S S i e i o W I i p S S d t d t pe e I t a l t S ‘o -m e I * A ‘ ‘ b ! sr 1 i 3 8 , 2 2 0 = = 9 p , 6 3 0 7 x . 5 . 1 2 7 4 , 0 0 0 3 p 5 s = 5 ! . 7 5 5 , 0 0 0 3 p 9 s 5 . 7 5 5 t. DD o 6 d 9 e 3 x 3 x 7 = 7 . x , 3 =0 5 5 7 6 2 2 2 0 , , 8 . f t . 6 a o 3 t x f l o io r n=m240 x - 68 =0 1 , 0 Ia 0 3d X 7 d l mie = n r . x , 3 =0 1 7 t 0 .3 2 0 f =l 3 t 6 f 1 t , T M o o MX m t ae n 1 X 3 6 1 9 2 8 0 1 M 2 r , = = R v t 1 8 3 . X 0 2 z = 5 8 12 ‘ ’ 5 4 3 X . . dt t ir n e p tu rse e r s s n e a ou l r s e , 8 c a l p Ar u e l v a i t o e u ds l y ) 1 c s T o1 0 p t , a Shell P L ‘ ‘ m v 5 a e7 f h sd e sf h o n t e t r l o wt t 2oho. p o w m h e ie 0ac r i kf t.n. lt n t l p S dt t w r e iu s n s de o . x 7 , PW x D] x X = V x ; = Mx s 1 3 s e s nh 1 s r p i ele t 1i , o ps e s 8r o a 5 to d it i i n n t g i i no h d g wo i a v re e 0 cs n n w s n l s o w t r p ele e as wta s 0 h f a b t m l h o e jr i ei e e a t f l ii 1c hi 1 ep 6n t c8 tr . of 8 n 5 sh e 0 u ei t . st p h ee 7 dt i b a5c o o . thk v te ie sot a e t m s f afe l h c a l n t hs i s it t A 70 I O P E R CA OT N DN I T I O N I N G u n s+ r e s t se, S s .8 d . t 3 w o 1 t r e 7 u is – 9 s n , e o 6 d u i s+ 9 s n e Stress due to weight 0 , o d6 4 3 – + 1 1 , 4 7 7 1 0 , – 3 9 S d t t ri pe 2 n s+ 1 es t se u r os 8 , + 1 1p , 0 s8 5 –i 8 p, 1 Stress due to weight T T T 8 t e u i s+ 9 s n , e S 6 d 4 r w 0 u is– 9 s n , e o d t 3 Stress due to weight 8 – – 3 5 p, + 9 p, 2 s8 2 i– 9 s u ts r ru e ri. e n i og n ) e o c t r n d Ne t ri t rw .D C O M B I N OA ST IT O R E S S E S N F D W AI R D D S LE E ES W AI R I E M E R E CT T N I N O DN I ) T I O N ( P C O Y N S d t t rw e Stress due to weight ( p T S ( l T c a l c h u s l a tar it ee b ns o sh h t hf ss t o t o e e ot e a m o h t d wr thae n s th t a s o s w i n s d i o i p a e rc r d a n tg d i e ioa n t gt v e o e n f n tr hfw n e e id h i e n tg w o n i o i c n i f T i h c e w r ne f f t . o hc r ra o l t cu i u c tl ba s t r i t o at e t h e s e t nn a e a i t u e h e n ht s 1 0p d , n 1e o s 4x t a2c l l i s o e wt a1 r b p ee6 e 8 ss s7h s e. 0l h e o e e s h 1 d t , lT t i5 u c i t p h i nsl ia t ia c f .at k t o r ys . s c e
  • 68. 75 EXAMPLE B (CONT.) Stressin the shellat 40 ft. down from the top of the tower. Platethickness0.25 in. S dt t w r e iu s n s de o . PW x D1 X X = v X : = Mx S P L s S ( 8 h 30 x e 3.5 X 40 = 4,200 X 20 = l l 8 a ?0t x f lin. ft. r = m 8 o 240 x 36 = 2 30 x 38 lint ft. = 1,140 x 19 = a d d e r T M o ol t m v a e . =l 1 ft 1 n 1 x 1 1 24 , , 3 1 M = = 5 RI n t = 1 8 x . 3 1 0 2 x . 5 . 1 dt t ir n ep tu r se e r s s n e a ou l r s e c a l pc Ar u e l v a i t o eu ds l y ) 1 s T o 7 l 4 , , 0 6 1 , 6 f X t , . 4 2 0 0 p , 3 2 4 p , p , t 8 a 1 T 0 i t .h p h 2f l i se n a c h4 of t k d 5 . e ie l s r t t t l a r t n 0 tc . ooe i o h m w f o t s a t i s N a c u c ra yl t c i ur l e e o t r it uos n r r aeh s d ea m ast e bo e nn f f t o . h a o q i em n n i o o
  • 69. 76 DESIGN OF SKIRT SUPPORT A skirt is the most frequently u v s e I si a s o t iw a ts m s e a o i ss f sad cf ep v ot pe y o o t r n th d u t r r t e tb l c s o c .n h t w iet se d tu lt o hd s ai ue h s g t ur o e e ql h u l d a n u y n a n a d e dz l e tdi e e i r tfm s i g no he ks n ke eh i s h t n h i ct s s r ft e . F i A ga u s r t en h s c B m ooo d t m w sm e t ok h os y th pna i t e t ar cI fh t m e e a o c a l c ou t l r t e i q hnu s i t ri v ee lo j h l e edo u f eg e c s i n te fn v c y a o w e f zd a t f , i b i C ( o m 1 U bd u ’2 a s e We ) y d e . G t is vv E X A M P L E a ch eo sn mis E i edxee e a r l em d p e n s B D = 37.5 in. E“ = 0.60 for butt joint 3 f 8 l , MT = 6 D F w W e , 0 b 0 0 . . . pm uc r o u r o a s l e F t p r t t e r r e m sq i ht u h e i rc i k e ndr e n k i e 1 = i o 1 MT n R2 ~ SE r =1 1 x 6 d U R E F E R T E N Ce E rS : m h 23 8 3 . X 17 . x w ef = o i g h r t D X 3 x SE= 3 . . = 18,000*stress value of SA-285-Cplate W = 3 1 l 2 t 2b 0 * s t = 18.75 in. R F S l n e 8 8)5 0 3 1 , X 1 7 X 1 4 .8 0 3 , X T ( Y ‘ t i ! p s f4 s i h l i s ts . . , 0 6 =0 2 i 2 . ,12 0 40 . 0 0 0i . 0 =0 ,1 5 0 40 . = 0 Ai . L f 6 a e o ” t kr k c i n4 ( 0 0 6 e t n2 6 n6 r . l 8 2
  • 70. 77 I DESIGN OF ANCHOR BOLT V s r e vr et s s i o o k s t t i n ca e t a l o cs n wk f u s a s t a m ,b e rt d s t s ce s the n fe e d t i hu c de m r r r o e al m a b e cn o y h s b l o ( fn b ah e r f br u t a a n a t t r g . The number of anchor bolts. The anchor bolts m b inumultiple of four and s t for tall towers it is preferred to use minimum eight bolts. Spacing of anchor bolts. The strength of too closely spaced anchor bolts is not fully developed in concrete foundation. It is advisable to set the anchor bolts not closer than about 18 inches. To hold this minimum spacing, in the case of small diameter vessel the enlarging of the bolt circle may be necessary by using conical skirt or wider base ring with gussets. Diameter of anchor bolts. Computing the required size of bolts the area within the root of the threads only can be taken into consideration. The root areas of bolts are shown below in Table A. For corrosion allowance one eighth of an inch should be added to the calculated diameter of anchor bolts. For anchor bolts and base design on the following pages are described: 1. 2. o a s r d i s e An approximate method which may be satisfactory in a number of cases. A method which offers closer investigation when the loading conditions and other circumstances make it necessary. ? TABLE B 13 12 NUMBER OF ANCHOR BOLTS TABLE A I Diameter of Q Minimum Maximum Bolt circle in. Bolt Bolt * Size RootAreas i Y 5 3 x 1 l l 1 l 1 1 1 2 z 2 2 3 * F 0 0 0 0 0 1 1 1 1 2 2 3 3 4 5 b Dimension in. 1 24 to 36 4 4 3 8 . t 5 2 8o 4 1 6 t 7 01 o 8 5 22 / / 8 . 7 1 68 t 1 8 1 41 o 2 2 3 08 / 4 0 . /I 2 21 1 2 t 1 0 82 o 6 / 6 1 . 1 3 - 1 1 0A 21 / 3 t 1 8 20 4 3 2 24 o 4 1 5 / 1 / / 8 1 6 1 -1 3 %18 2/ . 1 6 -1 9 3 /1 4 AC 4/T B L E . 1 8 -1 9x 3 0 /1 XA / I L 8 O US M B FL E S S E W T R E A O 3 3 A 8 L M . 1 0 -1 5 7 - M 4 /A O/ U A 2S L A TN E C BS HD O S R O L % .2 2 1 9 4B 1 52 A1 - S 5 / 5 c i 8 f i c a t i o n / 8 -1 . 5 1 M a a l l x p e D i e t ne r 4 b ai em S r p t r se .32 / 7 1 44- 4 3 u 1 / 4m N 8 3 8/ . 72 0 -1 4A 9 /7 l e / 2 A d 2 i a mA 1 5 t 5 e rl, s 0 . 2 3 -2 0 1 S 03 % - SA 193 B 74 / 2 a 4 u 1 n n d8 %, d 0 e 2 -2 3 /1 . 0 2 0 % . 3 7 ; 1 1 - /S 5 1 1 B 6 ;2 a 9 ; u 1 1 8 nA n 3 d 6 %, d 0 e : 12 o Y c 2, 6 v t ei r n l 0 3 SA 193 B 78 O . 3 6 - - 1% 8 / 5 9 v t 1 ie A r1 3 o26 c %, n l 7 8 / . 3 6 -2 2 5- S 1 17 B 8 /O 4 w o s o t li a t n t rd s e hr h t r a a d d s . q n1 .

Related Documents